scip_expr.h
Go to the documentation of this file.
121/* If NDEBUG is defined, the function calls are overwritten by defines to reduce the number of function calls and
187 * @note In deviation from the actual definition of monomials, we also allow for negative and rational exponents.
203 * @attention Only use if you really know what you are doing. The expression handler of the expression needs to be able to handle an increase in the number of children.
214 * The old child is released and the newchild is captured, unless they are the same (=same pointer).
226 * @attention Only use if you really know what you are doing. The expression handler of the expression needs to be able to handle the removal of all children.
240 SCIP_DECL_EXPR_MAPEXPR((*mapexpr)), /**< expression mapping function, or NULL for creating new expressions */
242 SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), /**< function to call on expression copy to create ownerdata */
263 SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), /**< function to call on expression copy to create ownerdata */
265 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to the corresponding
267 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
270 SCIP_Bool* valid /**< pointer to store whether all checked or enforced constraints were validly copied */
289 * `Op` corresponds to the name of an expression handler and `OpExpression` to whatever string the expression handler accepts (through its parse method).
296 const char** finalpos, /**< buffer to store the position of exprstr where we finished reading, or NULL if not of interest */
396 * It prints the expression into a temporary file in dot format, then calls dot to create a postscript file, then calls ghostview (gv) to show the file.
447 * Given a function, say, \f$f(s(x,y),t(x,y))\f$ there is a common mnemonic technique to compute its partial derivatives, using a tree diagram.
457 * The weight of an edge between two nodes represents the partial derivative of the parent w.r.t. the children, e.g.,
465 * The partial derivative of \f$f\f$ w.r.t. \f$x\f$ is then the sum of the weights of all paths connecting \f$f\f$ with \f$x\f$:
466 * \f[ \frac{\partial f}{\partial x} = \partial_s f \cdot \partial_x s + \partial_t f \cdot \partial_x t. \f]
468 * We follow this method in order to compute the gradient of an expression (root) at a given point (point).
469 * Note that an expression is a DAG representation of a function, but there is a 1-1 correspondence between paths
472 * Then, traversing the tree in Depth First (see \ref SCIPexpriterInit), for every expr that *has* children,
473 * we store in its i-th child, `child[i]->derivative`, the derivative of expr w.r.t. child evaluated at point multiplied with `expr->derivative`.
478 * 3. `x->derivative` = \f$\partial_x s \,\cdot\f$ `s->derivative` = \f$\partial_x s \cdot \partial_s f\f$
480 * However, when the child is a variable expressions, we actually need to initialize `child->derivative` to 0.0
486 * 3. `x->derivative` += \f$\partial_x s \,\cdot\f$ `s->derivative` = \f$\partial_x s \cdot \partial_s f\f$
487 * 4. `y->derivative` += \f$\partial_y s \,\cdot\f$ `s->derivative` = \f$\partial_y s \cdot \partial_s f\f$
489 * 6. `x->derivative` += \f$\partial_x t \,\cdot\f$ `t->derivative` = \f$\partial_x t \cdot \partial_t f\f$
490 * 7. `y->derivative` += \f$\partial_y t \,\cdot\f$ `t->derivative` = \f$\partial_y t \cdot \partial_t f\f$
492 * Note that, to compute this, we only need to know, for each expression, its partial derivatives w.r.t a given child at a point.
494 * Indeed, from "derivative of expr w.r.t. child evaluated at point multiplied with expr->derivative",
495 * note that at the moment of processing a child, we already know `expr->derivative`, so the only
498 * An equivalent way of interpreting the procedure is that `expr->derivative` stores the derivative of the root w.r.t. expr.
499 * This way, `x->derivative` and `y->derivative` will contain the partial derivatives of root w.r.t. the variable, that is, the gradient.
500 * Note, however, that this analogy is only correct for leave expressions, since the derivative value of an intermediate expression gets overwritten.
505 * Computing the Hessian is more complicated since it is the derivative of the gradient, which is a function with more than one output.
506 * We compute the Hessian by computing "directions" of the Hessian, that is \f$H\cdot u\f$ for different \f$u\f$.
507 * This is easy in general, since it is the gradient of the *scalar* function \f$\nabla f u\f$, that is,
513 * Then, by the chain rule, `expr->dot` = \f$\sum_{c:\text{children}} \partial_c \text{expr} \,\cdot\f$ `c->dot`.
515 * Starting with `x[i]->dot` = \f$u_i\f$, we can compute `expr->dot` for every expression at the same time we evaluate expr.
520 * Once we have this information, we compute the gradient of this function, following the same idea as before.
521 * We define `expr->bardot` to be the directional derivative in direction \f$u\f$ of the partial derivative of the root w.r.t `expr`,
531 * & = & \partial_{\text{expr}} \text{parent} \cdot D_u (\texttt{parent->derivative}) + \texttt{parent->derivative} \cdot D_u (\partial_{\text{expr}} \text{parent}) \\
532 * & = & \texttt{parent->bardot} \cdot \partial_{\text{expr}} \text{parent} + \texttt{parent->derivative} \cdot D_u (\partial_{\text{expr}} \text{parent})
537 * Hence the only information we need to compute is \f$D_u (\partial_{\text{expr}} \text{parent})\f$.
582 * Reevaluate activity if currently stored is no longer uptodate (some bound was changed since last evaluation).
590 * Thus, ensure that the integrality information is valid (if set to TRUE; the default (FALSE) is always ok).
628 * 1. Simplify each factor (simplifyFactor()): At this stage we got the children of the product expression.
629 * At this point, each child is simplified when viewed as a stand-alone expression, but not necessarily when viewed as child of a product expression.
631 * 2. Multiply the factors (mergeProductExprlist()): At this point rules like SP4, SP5 and SP14 are enforced.
635 * During steps 1 and 2 do not forget to set the flag `changed` to TRUE when something actually changes.
652 * (TODO: we could handle more complicated stuff like \f$xy\log(x) \to - y * \mathrm{entropy}(x)\f$, but I am not sure this should happen at the simplification level;
655 * - SP12b: if it has at least two children and expandalways is set, then no child is a sum (expand sums always)
664 * - POW5a: if exponent is fractional and distribfracexponent param is enabled, its child is not a product
665 * - POW6: if exponent is integer, its child is not a sum with a single term (\f$(2x)^2 \to 4x^2\f$)
666 * - POW7: if exponent is integer and at most expandmaxeponent param, its child is not a sum (expand sums)
667 * - POW8: its child is not a power unless \f$(x^n)^m\f$ with \f$nm\f$ being integer and \f$n\f$ or \f$m\f$ fractional and \f$n\f$ not being even integer
668 * - POW9: its child is not a sum with a single term with a positive coefficient: \f$(25x)^{0.5} \to 5 x^{0.5}\f$
669 * - POW10: its child is not a binary variable: \f$b^e, e > 0 \to b\f$; \f$b^e, e < 0 \to b := 1\f$
670 * - POW11: its child is not an exponential: \f$\exp(\text{expr})^e \to \exp(e\cdot\text{expr})\f$
671 * - POW12: its child is not an absolute value if the exponent is an even integer: \f$\abs(\text{expr})^e, e \text{ even} \to \text{expr}^e\f$
680 * - SPOW9: its child is not a sum with a single term: \f$\mathrm{signpow}(25x,0.5) \to 5\mathrm{signpow}(x,0.5)\f$
681 * - SPOW10: its child is not a binary variable: \f$\mathrm{signpow}(b,e), e > 0 \to b\f$; \f$\mathrm{signpow}(b,e), e < 0 \to b := 1\f$
682 * - SPOW11: its child is not an exponential: \f$\mathrm{signpow}(\exp(\text{expr}),e) \to \exp(e\cdot\text{expr})\f$
684 * - TODO: if child ≥ 0 -> transform to normal power; if child < 0 -> transform to - normal power
686 * TODO: Some of these criteria are too restrictive for signed powers; for example, the exponent does not need to be
687 * an integer for signedpower to distribute over a product (SPOW5, SPOW6, SPOW8). Others can also be improved.
697 * - SS9: if a child c is a product that has an exponential expression as one of its factors, then the coefficient of c is +/-1.0
706 * There are two groups of rules, when comparing equal type expressions and different type expressions.
710 * - OR2: u,v var expressions: u < v ⇔ `SCIPvarGetIndex(var(u))` < `SCIPvarGetIndex(var(v))`
712 * - OR4: u,v are both pow: u < v ⇔ base(u) < base(v) or, base(u) = base(v) and expo(u) < expo(v)
713 * - OR5: u,v are \f$u = f(u_1, ..., u_n), v = f(v_1, ..., v_m)\f$: u < v ⇔ For the first k such that \f$u_k \neq v_k\f$, \f$u_k < v_k\f$, or if such a \f$k\f$ doesn't exist, then \f$n < m\f$.
718 * In other words, if \f$u = \sum_{i=1}^n \alpha_i u_i\f$, then u < v ⇔ \f$u_n\f$ < v or if \f$u_n\f$ = v and \f$\alpha_n\f$ < 1.
730 * Hence, we try to answer x^2 < x ?: x^2 < x ⇔ x < x or if x = x and 2 < 1 ⇔ 2 < 1 ⇔ False. So x < x^2 is True.
731 * - x < x^-1 --OR12→ ~(x^-1 < x) --OR9→ ~(x^-1 < x^1) --OR4→ ~(x < x or -1 < 1) → ~True → False
768/** replaces common sub-expressions in a given expression graph by using a hash key for each expression
772 * 1. traverse through all given expressions and compute for each of them a (not necessarily unique) hash
774 * 2. initialize an empty hash table and traverse through all expression; check for each of them if we can find a
775 * structural equivalent expression in the hash table; if yes we replace the expression by the expression inside the
778 * @note the hash keys of the expressions are used for the hashing inside the hash table; to compute if two expressions
786 SCIP_Bool* replacedroot /**< buffer to store whether any root expression (expression in exprs) was replaced */
792 * @note this function relies on information from the curvature callback of expression handlers only,
793 * consider using function @ref SCIPhasExprCurvature() of the convex-nlhdlr instead, as that uses more information to deduce convexity
826 * the number of unique variable expressions in the expression which is given by SCIPgetExprNVars().
828 * If every variable is represented by only one variable expression (common subexpression have been removed)
830 * If, in addition, non-active variables have been removed from the expression, e.g., by simplifying,
891 * Does not iterates over expressions, but requires values for children and direction to be given.
894 * If an evaluation error (division by zero, ...) occurs, this value will be set to `SCIP_INVALID`.
897 * If an differentiation error (division by zero, ...) occurs, this value will be set to `SCIP_INVALID`.
964#define SCIPappendExprChild(scip, expr, child) SCIPexprAppendChild((scip)->set, (scip)->mem->probmem, expr, child)
965#define SCIPreplaceExprChild(scip, expr, childidx, newchild) SCIPexprReplaceChild((scip)->set, (scip)->stat, (scip)->mem->probmem, expr, childidx, newchild)
966#define SCIPremoveExprChildren(scip, expr) SCIPexprRemoveChildren((scip)->set, (scip)->stat, (scip)->mem->probmem, expr)
967#define SCIPduplicateExpr(scip, expr, copyexpr, mapexpr, mapexprdata, ownercreate, ownercreatedata) SCIPexprCopy((scip)->set, (scip)->stat, (scip)->mem->probmem, (scip)->set, (scip)->stat, (scip)->mem->probmem, expr, copyexpr, mapexpr, mapexprdata, ownercreate, ownercreatedata)
968#define SCIPduplicateExprShallow(scip, expr, copyexpr, ownercreate, ownercreatedata) SCIPexprDuplicateShallow((scip)->set, (scip)->mem->probmem, expr, copyexpr, ownercreate, ownercreatedata)
970#define SCIPreleaseExpr(scip, expr) SCIPexprRelease((scip)->set, (scip)->stat, (scip)->mem->probmem, expr)
976#define SCIPprintExpr(scip, expr, file) SCIPexprPrint((scip)->set, (scip)->stat, (scip)->mem->probmem, (scip)->messagehdlr, file, expr)
977#define SCIPevalExpr(scip, expr, sol, soltag) SCIPexprEval((scip)->set, (scip)->stat, (scip)->mem->probmem, expr, sol, soltag)
979#define SCIPevalExprGradient(scip, expr, sol, soltag) SCIPexprEvalGradient((scip)->set, (scip)->stat, (scip)->mem->probmem, expr, sol, soltag)
980#define SCIPevalExprHessianDir(scip, expr, sol, soltag, direction) SCIPexprEvalHessianDir((scip)->set, (scip)->stat, (scip)->mem->probmem, expr, sol, soltag, direction)
981#define SCIPevalExprActivity(scip, expr) SCIPexprEvalActivity((scip)->set, (scip)->stat, (scip)->mem->probmem, expr)
983#define SCIPsimplifyExpr(scip, rootexpr, simplified, changed, infeasible, ownercreate, ownercreatedata) SCIPexprSimplify((scip)->set, (scip)->stat, (scip)->mem->probmem, rootexpr, simplified, changed, infeasible, ownercreate, ownercreatedata)
984#define SCIPcallExprCurvature(scip, expr, exprcurvature, success, childcurv) SCIPexprhdlrCurvatureExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, exprcurvature, success, childcurv)
985#define SCIPcallExprMonotonicity(scip, expr, childidx, result) SCIPexprhdlrMonotonicityExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, childidx, result)
986#define SCIPcallExprEval(scip, expr, childrenvalues, val) SCIPexprhdlrEvalExpr(SCIPexprGetHdlr(expr), (scip)->set, (scip)->mem->buffer, expr, val, childrenvalues, NULL)
987#define SCIPcallExprEvalFwdiff(scip, expr, childrenvalues, direction, val, dot) SCIPexprhdlrEvalFwDiffExpr(SCIPexprGetHdlr(expr), (scip)->set, (scip)->mem->buffer, expr, val, dot, childrenvalues, NULL, direction, NULL)
988#define SCIPcallExprInteval(scip, expr, interval, intevalvar, intevalvardata) SCIPexprhdlrIntEvalExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, interval, intevalvar, intevalvardata)
989#define SCIPcallExprEstimate(scip, expr, localbounds, globalbounds, refpoint, overestimate, targetvalue, coefs, constant, islocal, success, branchcand) SCIPexprhdlrEstimateExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, localbounds, globalbounds, refpoint, overestimate, targetvalue, coefs, constant, islocal, success, branchcand)
990#define SCIPcallExprInitestimates(scip, expr, bounds, overestimate, coefs, constant, nreturned) SCIPexprhdlrInitEstimatesExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, bounds, overestimate, coefs, constant, nreturned)
991#define SCIPcallExprSimplify(scip, expr, simplifiedexpr, ownercreate, ownercreatedata) SCIPexprhdlrSimplifyExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, simplifiedexpr, ownercreate, ownercreatedata)
992#define SCIPcallExprReverseprop(scip, expr, bounds, childrenbounds, infeasible) SCIPexprhdlrReversePropExpr(SCIPexprGetHdlr(expr), (scip)->set, expr, bounds, childrenbounds, infeasible)
993#define SCIPcallExprGetSymData(scip, expr, symdata) SCIPexprhdlrGetSymdata(SCIPexprGetHdlr(expr), (scip)->set, expr, symdata)
1016#define SCIPcreateExpriter(scip, iterator) SCIPexpriterCreate((scip)->stat, (scip)->mem->probmem, iterator)
1028 * An expression is quadratic if it is either a square (of some expression), a product (of two expressions),
1052 * \note This requires that every expression used in the quadratic data is a variable expression.
1070 * For this, it builds the matrix Q of quadratic coefficients and computes its eigenvalues using LAPACK.
1076 * If `assumevarfixed` is given and some expressions in quadratic terms correspond to variables present in
1084 SCIP_HASHMAP* assumevarfixed, /**< hashmap containing variables that should be assumed to be fixed, or NULL */
1089#define SCIPcheckExprQuadratic(scip, expr, isquadratic) SCIPexprCheckQuadratic((scip)->set, (scip)->mem->probmem, expr, isquadratic)
1091#define SCIPcomputeExprQuadraticCurvature(scip, expr, curv, assumevarfixed, storeeigeninfo) SCIPexprComputeQuadraticCurvature((scip)->set, (scip)->mem->probmem, (scip)->mem->buffer, (scip)->messagehdlr, expr, curv, assumevarfixed, storeeigeninfo)
1104 * Given a non-trivial monomial expression, the function finds its representation as \f$cx^\alpha\f$, where
1105 * \f$c\f$ is a real coefficient, \f$x\f$ is a vector of auxiliary or original variables (where some entries can
1106 * be NULL is the auxiliary variable has not been created yet), and \f$\alpha\f$ is a real vector of exponents.
1120#define SCIPgetExprMonomialData(scip, expr, coef, exponents, factors) SCIPexprGetMonomialData((scip)->set, (scip)->mem->probmem, expr, coef, exponents, factors)
private functions to work with algebraic expressions
static SCIP_RETCODE eval(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRINTDATA *exprintdata, const vector< Type > &x, Type &val)
Definition: exprinterpret_cppad.cpp:1334
SCIP_RETCODE SCIPincludeExprhdlr(SCIP *scip, SCIP_EXPRHDLR **exprhdlr, const char *name, const char *desc, unsigned int precedence, SCIP_DECL_EXPREVAL((*eval)), SCIP_EXPRHDLRDATA *data)
Definition: scip_expr.c:823
SCIP_EXPRHDLR * SCIPfindExprhdlr(SCIP *scip, const char *name)
Definition: scip_expr.c:868
SCIP_DECL_EXPRMONOTONICITY(SCIPcallExprMonotonicity)
Definition: scip_expr.c:2169
SCIP_RETCODE SCIPcreateExprQuadratic(SCIP *scip, SCIP_EXPR **expr, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, int nquadterms, SCIP_VAR **quadvars1, SCIP_VAR **quadvars2, SCIP_Real *quadcoefs, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1033
SCIP_RETCODE SCIPcreateExprMonomial(SCIP *scip, SCIP_EXPR **expr, int nfactors, SCIP_VAR **vars, SCIP_Real *exponents, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1141
SCIP_RETCODE SCIPgetSymDataExpr(SCIP *scip, SCIP_EXPR *expr, SYM_EXPRDATA **symdata)
Definition: scip_expr.c:1792
SCIP_RETCODE SCIPcreateExpr(SCIP *scip, SCIP_EXPR **expr, SCIP_EXPRHDLR *exprhdlr, SCIP_EXPRDATA *exprdata, int nchildren, SCIP_EXPR **children, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:974
SCIP_RETCODE SCIPappendExprChild(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR *child)
Definition: scip_expr.c:1230
SCIP_RETCODE SCIPevalExprHessianDir(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_SOL *direction)
Definition: scip_expr.c:1689
SCIP_RETCODE SCIPevalExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: scip_expr.c:1635
SCIP_RETCODE SCIPprintExprQuadratic(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2470
SCIP_RETCODE SCIPcomputeExprIntegrality(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2015
SCIP_Bool SCIPisExprProduct(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1464
SCIP_RETCODE SCIPevalExprGradient(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: scip_expr.c:1667
SCIP_RETCODE SCIPprintExprDotInit2(SCIP *scip, SCIP_EXPRPRINTDATA **printdata, const char *filename, SCIP_EXPRPRINT_WHAT whattoprint)
Definition: scip_expr.c:1517
SCIP_RETCODE SCIPgetExprMonomialData(SCIP *scip, SCIP_EXPR *expr, SCIP_Real *coef, SCIP_Real *exponents, SCIP_EXPR **factors)
Definition: scip_expr.c:2623
SCIP_RETCODE SCIPgetExprNVars(SCIP *scip, SCIP_EXPR *expr, int *nvars)
Definition: scip_expr.c:2058
SCIP_RETCODE SCIPduplicateExprShallow(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR **copyexpr, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1301
SCIP_RETCODE SCIPreplaceExprChild(SCIP *scip, SCIP_EXPR *expr, int childidx, SCIP_EXPR *newchild)
Definition: scip_expr.c:1248
SCIP_RETCODE SCIPcreateExpr2(SCIP *scip, SCIP_EXPR **expr, SCIP_EXPRHDLR *exprhdlr, SCIP_EXPRDATA *exprdata, SCIP_EXPR *child1, SCIP_EXPR *child2, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:995
void SCIPfreeExprQuadratic(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2395
SCIP_RETCODE SCIPprintExprDot(SCIP *scip, SCIP_EXPRPRINTDATA *printdata, SCIP_EXPR *expr)
Definition: scip_expr.c:1533
int SCIPcompareExpr(SCIP *scip, SCIP_EXPR *expr1, SCIP_EXPR *expr2)
Definition: scip_expr.c:1734
SCIP_RETCODE SCIPreleaseExpr(SCIP *scip, SCIP_EXPR **expr)
Definition: scip_expr.c:1417
SCIP_RETCODE SCIPparseExpr(SCIP *scip, SCIP_EXPR **expr, const char *exprstr, const char **finalpos, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1380
SCIP_RETCODE SCIPhashExpr(SCIP *scip, SCIP_EXPR *expr, unsigned int *hashval)
Definition: scip_expr.c:1746
SCIP_RETCODE SCIPcomputeExprQuadraticCurvature(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRCURV *curv, SCIP_HASHMAP *assumevarfixed, SCIP_Bool storeeigeninfo)
Definition: scip_expr.c:2586
SCIP_DECL_EXPRGETSYMDATA(SCIPcallExprGetSymData)
Definition: scip_expr.c:2315
SCIP_RETCODE SCIPcallExprEval(SCIP *scip, SCIP_EXPR *expr, SCIP_Real *childrenvalues, SCIP_Real *val)
Definition: scip_expr.c:2185
SCIP_RETCODE SCIPcreateExpriter(SCIP *scip, SCIP_EXPRITER **iterator)
Definition: scip_expr.c:2337
SCIP_RETCODE SCIPcallExprEvalFwdiff(SCIP *scip, SCIP_EXPR *expr, SCIP_Real *childrenvalues, SCIP_Real *direction, SCIP_Real *val, SCIP_Real *dot)
Definition: scip_expr.c:2212
SCIP_RETCODE SCIPprintExpr(SCIP *scip, SCIP_EXPR *expr, FILE *file)
Definition: scip_expr.c:1486
SCIP_RETCODE SCIPreplaceCommonSubexpressions(SCIP *scip, SCIP_EXPR **exprs, int nexprs, SCIP_Bool *replacedroot)
Definition: scip_expr.c:1820
SCIP_RETCODE SCIPcheckExprQuadratic(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool *isquadratic)
Definition: scip_expr.c:2377
SCIP_RETCODE SCIPprintExprDotFinal(SCIP *scip, SCIP_EXPRPRINTDATA **printdata)
Definition: scip_expr.c:1547
SCIP_RETCODE SCIPprintExprDotInit(SCIP *scip, SCIP_EXPRPRINTDATA **printdata, FILE *file, SCIP_EXPRPRINT_WHAT whattoprint)
Definition: scip_expr.c:1501
SCIP_RETCODE SCIPcopyExpr(SCIP *sourcescip, SCIP *targetscip, SCIP_EXPR *expr, SCIP_EXPR **copyexpr, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *valid)
Definition: scip_expr.c:1318
SCIP_Real SCIPevalExprQuadratic(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol)
Definition: scip_expr.c:2410
SCIP_RETCODE SCIPcomputeExprCurvature(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1935
SCIP_DECL_EXPRREVERSEPROP(SCIPcallExprReverseprop)
Definition: scip_expr.c:2302
SCIP_DECL_EXPRINITESTIMATES(SCIPcallExprInitestimates)
Definition: scip_expr.c:2267
SCIP_RETCODE SCIPduplicateExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR **copyexpr, SCIP_DECL_EXPR_MAPEXPR((*mapexpr)), void *mapexprdata, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1281
SCIP_RETCODE SCIPgetExprVarExprs(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR **varexprs, int *nvarexprs)
Definition: scip_expr.c:2096
SCIP_RETCODE SCIPdismantleExpr(SCIP *scip, FILE *file, SCIP_EXPR *expr)
Definition: scip_expr.c:1608
SCIP_RETCODE SCIPremoveExprChildren(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1267
SCIP_RETCODE SCIPsimplifyExpr(SCIP *scip, SCIP_EXPR *rootexpr, SCIP_EXPR **simplified, SCIP_Bool *changed, SCIP_Bool *infeasible, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1773
SCIP_RETCODE SCIPevalExprActivity(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1717
Definition: objbenders.h:44
internal methods for global SCIP settings
Definition: struct_expr.h:204
Definition: struct_expr.h:106
Definition: struct_expr.h:44
Definition: struct_misc.h:138
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_symmetry.h:103
Definition: struct_scip.h:70
datastructures for block memory pools and memory buffers
SCIP main data structure.
datastructures for global SCIP settings
datastructures for problem statistics
type and macro definitions related to algebraic expressions
type definitions for message output methods
type definitions for miscellaneous datastructures
type definitions for SCIP's main datastructure