Scippy

SCIP

Solving Constraint Integer Programs

Welcome!

SCIP is currently one of the fastest non-commercial solvers for mixed integer programming (MIP) and mixed integer nonlinear programming (MINLP). It is also a framework for constraint integer programming and branch-cut-and-price. It allows for total control of the solution process and the access of detailed information down to the guts of the solver.



By default, SCIP comes with a bouquet of different plugins for solving MIPs and MINLPs.
If you are new to SCIP, want to dive in and don't know where to begin, then have a look at the Getting started page.

News

Jan/2025 SCIP version 9.2.1
The SCIP Optimization Suite 9.2.1 consists of SCIP 9.2.1, GCG 3.7.1, SoPlex 7.1.3, ZIMPL 3.6.2, PaPILO 2.4.1 and UG 1.0.0 beta 6. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Nov/2024 SCIP version 9.2.0
The SCIP Optimization Suite 9.2.0 consists of SCIP 9.2.0, GCG 3.7.0, SoPlex 7.1.2, ZIMPL 3.6.2, PaPILO 2.4.0 and UG 1.0.0 beta 6. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Sep/2024 SCIP version 9.1.1
The SCIP Optimization Suite 9.1.1 consists of SCIP 9.1.1, GCG 3.6.3, SoPlex 7.1.1, ZIMPL 3.6.2, PaPILO 2.3.1 and UG 1.0.0 beta 5. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Jun/2024 SCIP version 9.1.0
The SCIP Optimization Suite 9.1.0 (minor release) consists of SCIP 9.1.0, GCG 3.6.2, SoPlex 7.1.0, ZIMPL 3.6.1, PaPILO 2.3.0 and UG 1.0.0 beta 5. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
May/2024 SCIP version 9.0.1
The SCIP Optimization Suite 9.0.1 consists of SCIP 9.0.1, GCG 3.6.1, SoPlex 7.0.1, ZIMPL 3.6.0, PaPILO 2.2.1 and UG 1.0.0 beta 4. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Feb/2024 SCIP version 9.0.0
The SCIP Optimization Suite 9.0.0 consists of SCIP 9.0.0, GCG 3.6.0, SoPlex 7.0.0, ZIMPL 3.5.3, PaPILO 2.2.0 and UG 1.0.0 beta 4. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Nov/2023 SCIP version 8.1.0
The SCIP Optimization Suite 8.1.0 consists of SCIP 8.1.0, GCG 3.5.5, SoPlex 6.0.4, ZIMPL 3.5.3, PaPILO 2.1.4 and UG 1.0.0 beta 3. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Aug/2023 SCIP version 8.0.4
The SCIP Optimization Suite 8.0.4 consists of SCIP 8.0.4, GCG 3.5.3, SoPlex 6.0.4, ZIMPL 3.5.3, PaPILO 2.1.3 and UG 1.0.0 beta 3. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
Dec/2022 SCIP version 8.0.3
The SCIP Optimization Suite 8.0.3 consists of SCIP 8.0.3, GCG 3.5.3, SoPlex 6.0.3, ZIMPL 3.5.3, PaPILO 2.1.2 and UG 1.0.0 beta 3. Please check the CHANGELOG of SCIP or browse the individual CHANGELOGs of the other projects.
04/Nov/2022 SCIP license update
Starting with the next release SCIP will be licensed under the Apache 2.0 License.

older news...

About

What is SCIP?

A similar technique is used for solving both Integer Programs and Constraint Programs: the problem is successively divided into smaller subproblems (branching) that are solved recursively.

On the other hand, Integer Programming and Constraint Programming have different strengths: Integer Programming uses LP relaxations and cutting planes to provide strong dual bounds, while Constraint Programming can handle arbitrary (non-linear) constraints and uses propagation to tighten domains of variables.

SCIP is a framework for Constraint Integer Programming oriented towards the needs of mathematical programming experts who want to have total control of the solution process and access detailed information down to the guts of the solver. SCIP can also be used as a pure MIP and MINLP solver or as a framework for branch-cut-and-price.

SCIP is implemented as C callable library and provides C++ wrapper classes for user plugins. It can also be used as a standalone program to solve mixed integer linear and nonlinear programs given in various formats such as MPS, LP, flatzinc, CNF, OPB, WBO, PIP, etc. Furthermore, SCIP can directly read ZIMPL models.

Detailed list of SCIP's features

  • very fast standalone solver for linear programming (LP), mixed integer programming (MIP), and mixed integer nonlinear programming (MINLP)
  • framework for branching, cutting plane separation, propagation, pricing, and Benders' decomposition,
  • highly flexible through many possible user plugins:
    • constraint handlers to implement arbitrary constraints,
    • variable pricers to dynamically create problem variables,
    • domain propagators to apply constraint independent propagations on the variables' domains,
    • separators for cutting planes based on the LP relaxation; benefit from a dynamic cut pool management,
    • relaxators can be included to provide relaxations (e.g., semidefinite relaxations or Lagrangian relaxations) and dual bounds in addition to the LP relaxation, working in parallel or interleaved
    • plugins to apply Benders' decomposition and implement Benders' cuts,
    • primal heuristics to search for feasible solutions with specific support for probing and diving,
    • node selectors to guide the search,
    • branching rules to split the problem into subproblems; arbitrarily many children per node can be created, and the different children can be arbitrarily defined,
    • presolvers to simplify the solved problem,
    • file readers to parse different input file formats,
    • event handlers to be informed on specific events, e.g., after a node was solved, a specific variable changes its bounds, or a new primal solution is found,
    • display handlers to create additional columns in the solver's output.
    • dialog handlers to extend the included command shell.
    • conflict analysis can be applied to learn from infeasible subproblems
    • dynamic memory management to reduce the number of operation system calls with automatic memory leakage detection in debug mode

What is the SCIP Optimization Suite?

The SCIP Optimization Suite is a toolbox for generating and solving mixed integer nonlinear programs, in particular mixed integer linear programs, and constraint integer programs. It consists of the following parts:

SCIP mixed integer (linear and nonlinear) programming solver and constraint programming framework
SoPlex linear programming solver
PaPILO parallel presolve for integer and linear optimization
ZIMPL mathematical programming language
UG parallel framework for mixed integer (linear and nonlinear) programs
GCG generic branch-cut-and-price solver

The user can easily generate linear, mixed integer and mixed integer quadratically constrained programs with the modeling language ZIMPL. The resulting model can directly be loaded into SCIP and solved. In the solution process SCIP may use SoPlex as underlying LP solver.

Since all six components are available in source code and free for academic use, they are an ideal tool for academic research purposes and for teaching mixed integer programming.

Download the SCIP Optimization Suite below.

A further extension of SCIP in order to solve MISDPs (mixed-integer semidefinite programs) is available from TU Darmstadt: SCIP-SDP.


License

Since November 4 2022, SCIP is licensed under the Apache 2.0 License.

Releases up to and including Version 8.0.2 remain under the ZIB Academic License as indicated by the files contained in the releases. The new license applies from Version 8.0.3 onwards.

Download

The files you can download here come without warranty. Use at your own risk!

Source Code

You can either download SCIP alone or the SCIP Optimization Suite (recommended), a complete source code bundle of SCIP, SoPlex, ZIMPL, GCG, PaPILO and UG.

Source code archives (including applications and examples)

Click here for information on different platforms ...

Precompiled Packages

You can also download precompiled executables of SCIP with which you can solve MIP, MINLP, CIP, SAT, or PBO instances in various formats.
Note that these executables do not include the readline features (i.e., command line editing and history) due to license issues. However, you can download the free readline wrapper rlwrap to provide this missing feature to the executables.

Installers (install the scipoptsuite in your computer, without source files):
SoPlex ZIMPL GCG UG PaPILO Ipopt CPPAD zlib symGMP
SCIPOptSuite-9.2.1-Linux-ubuntu24.sh
Linux self-extracting archive (built on ubuntu 24.04, requires gcc g++ gfortran liblapack3 libopenblas0 libtbb12 libcliquer1 libmetis5 libboost-program-options1.83.0 libboost-serialization1.83.0 libgmp10 patchelf)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.3nauty 2.8.8 sassy 1.1 6.3.0
SCIPOptSuite-9.2.1-Linux-ubuntu24.deb
Linux deb package (built on ubuntu 22.04)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.3nauty 2.8.8 sassy 1.1 6.3.0
SCIPOptSuite-9.2.1-Linux-ubuntu22.sh
Linux self-extracting archive (built on ubuntu 22.04, requires gcc g++ gfortran liblapack3 libtbb12 libcliquer1 libopenblas-dev patchelf)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-ubuntu22.deb
Linux deb package (built on ubuntu 22.04)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180001.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-ubuntu20.sh
Linux self-extracting archive (built on ubuntu 20.04, requires gcc g++ gfortran liblapack3 libtbb2 libcliquer1 libopenblas-dev patchelf)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-ubuntu20.deb
Linux deb package (built on ubuntu 20.04)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180001.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-debian12.sh
Linux self-extracting archive (built on debian bookworm, requires gcc g++ gfortran liblapack3 libtbb12 libcliquer1 libopenblas-dev patchelf)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-debian12.deb
Linux deb package (built on debian bookworm)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-debian11.sh
Linux self-extracting archive (built on debian bullseye, requires gcc g++ gfortran liblapack3 libtbb2 libcliquer1 libopenblas-dev patchelf)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.2.11nauty 2.8.8 sassy 1.1 6.2.1
SCIPOptSuite-9.2.1-Linux-debian11.deb
Linux deb package (built on debian bullseye)
7.1.33.6.23.7.11.0.0beta62.4.13.14.1720180000.01.2.11nauty 2.8.8 sassy 1.1 6.2.1

Conda

If you use conda, you can install the components of the scipoptsuite using the conda packages.

Notes

  • Symmetry handling limits the number of search nodes and generators during the backtrack search and improves performance of symmetry handling in SCIP. Since SCIP version 9.1 nauty is the default symmetry library with sassy as symmetry presolving library. Nauty as well as sassy are included in the SCIP repository and are find automatically. An alternative to nauty is bliss. A patched bliss fork is available on GitHub.
  • Windows Defender may block the installation of the SCIP Optimization Suite installer. Try adding an exclusion to Windows Security to work around this.
  • For some of the mac packages you need the libgfortran and libtbb libraries, and bison. You can install them for example via homebrew: `brew install bison`, `brew install gcc` and `brew install tbb` before installing the scipoptsuite.
    After installation of the .sh package to a custom directory you may need to include the lib folder into your DYLD_LIBRARY_PATH.
    If you want to compile the Suite on a apple silicon M series processor you might need to set `ARCH=arm` as an argument to make.
  • The linux precompiled binaries are built on debian and ubuntu, both debian based distributions. Chances are that you won't be able to install them on a different one, like arch-linux.
  • If you download an executable containing PaPILO you might need a working installation of the TBB library in your machine. (This might also be available via your package manager, for debian, for example, it is called `libtbb2`.)
  • For GCG on a linux system you need a working installation of hMETIS version >= 2.0, and zsh (apt install zsh) in your system.
  • Here is the download section of MIPLIB 2017 benchmark MPS files.
  • SCIP is also available on the NEOS Server, where you can post your model in LP or MPS format, or as an AMPL, GAMS, or ZIMPL model and let the NEOS Server solve it with SCIP linked to CPLEX.
  • A development version of SCIP 7 to solve MIPs exactly without floating-point roundoff errors is available as a separate download on Github .

Interfaces and LP Solvers usable with SCIP

There are many interfaces to SCIP. The following are included in SCIP or available at https://github.com/scipopt:

Interface implementing custom plugins building and solving static models modifying and iterated solving querying solution pool setting parameters
C/C++-API yes yes yes yes yes
Python/PySCIPOpt yes yes yes yes yes
Julia/SCIP.jl yes yes yes yes yes
Rust/Russcip yes yes yes yes yes
MatlabSCIPInterface no yes no no yes
Java/JSCIPOpt no yes no yes yes
C++/SCIP++ no yes no no yes
AMPL no yes no no yes

For further details, check out the interface section of the documentation.

Also, a number of LP solvers can be linked and used by SCIP:

How to Cite

Any publication for which SCIP or the SCIP Optimization Suite is used must include an acknowledgement and a reference to one of the following articles, depending on the version used:

The SCIP Optimization Suite 9.0
Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner, Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner, Stefan Vigerske, Dieter Weninger, Lixing Xu
Available at Optimization Online and as ZIB-Report 24-02-29, February 2024
BibTeX

Click here for a list of previous release reports...

In order to reference the general algorithmic design behind constraint integer programming and SCIP's solving techniques regarding mixed-integer linear and nonlinear programming, please cite the following articles:

and

A more detailed description of SCIP can be found in

The features for the global optimization of convex and nonconvex MINLPs are described in

The extension of SCIP to solve MIPs exactly over rational input data is described in

However, for the latest developments, please consult our series of release reports.

Contact

For general information or questions about SCIP please write to the SCIP mailing list scip@zib.de after subscribing to it at the SCIP mailing list page. For licensing questions, please see the license section of the web page and the contact provided there.
Trouble compiling SCIP from source? Please check the build documentation before sending an email.
For questions about our SCIP interfaces on GitHub please open an issue in the corresponding repository.

Mailing List

The SCIP mailing list can be accessed via the SCIP mailing list page. You can conveniently search the archives using Google: site:listserv.zib.de/pipermail/scip

Stack Overflow

We are also watching the SCIP tag on stackoverflow.com and will answer your questions there. Note that we will not answer faster only because you posted the same question both to stack overflow and the mailing list.

Reporting Bugs

SCIP has more than 500,000 lines of source code and is definitely not bug free. If you'd like to help us improve SCIP, visit our bug submission page and file a bug report in English or German.

Team Members

Current

Ksenia Bestuzheva Head of development, Mixed-integer nonlinear programming
Suresh Bolusani Cutting planes
Antonia Chmiela Machine learning for optimization, cutting planes
João Dionísio Python interface
Tim Donkiewicz Decomposition framework GCG
Leon Eifler Verification, exact SCIP & SoPlex
Oliver Gaul Decomposition framework GCG
Mohammed Ghannam Rust interface, Python interface
Ambros Gleixner General framework, exact SCIP & SoPlex, verification
Alexander Hoen Presolving
Christopher Hojny Symmetry handling
Rolf van der Hulst Network optimization, total unimodularity
Dominik Kamp Robustness
Thorsten Koch Algebraic modeling language ZIMPL
Marco Lübbecke Decomposition framework GCG
Stephen J. Maher Benders decomposition
Gioni Mexi Conflict analysis, Primal heuristics, Pseudoboolean optimization, Branching
Erik Mühmer Decomposition framework GCG
Marc Pfetsch General framework, LP solvers, special constraints, symmetry handling
Sebastian Pokutta Project Head
Yuji Shinano Parallelization framework UG
Mark R. Turner Cutting planes selection, branching, Python interface
Stefan Vigerske Mixed-integer nonlinear programming, Release management, Compiler whisperer
Matthias Walter Multilinear optimization, CMake build system
Dieter Weninger Presolving, mixed integer programming, decomposition methods
Liding Xu Mixed-integer nonlinear programming

Former

Tobias Achterberg Creator and first developer of SCIP
Timo Berthold Primal heuristics, branching rules
Mathieu Besançon Mixed-integer linear and non-linear formulations
Jasper van Doornmalen Symmetry handling
Tobias Fischer Constraint handler for special ordered sets, type one; cardinality constraint handler
Tristan Gally Relaxation Handlers, SCIP-SDP
Gerald Gamrath Column generation, mixed integer programming, branching
Leona Gottwald Shared memory parallelization, cutting planes, presolving, CMake
Christoph Graczyk Machine learning for optimization
Katrin Halbig Mixed-integer programming, decomposition heuristics
Stefan Heinz Solution counting, global constraints, conflict analysis
Gregor Hendel Primal heuristics, mixed integer programming, solver intelligence, CMake, SCIP documentation
Julian Manns Test and release management
Alexander Martin Developer of SIP – the predecessor of SCIP
Matthias Miltenberger LP interfaces, Python interface, CMake
Cristina Muñoz Test management
Benjamin Müller Mixed integer nonlinear programming, domain propagation
Franziska Schlösser Test and release management
Felipe Serrano Nonlinear programming, cutting planes, Python interface
Boro Šofranac Parallelization, conflict analysis
Fabian Wegscheider Symmetries in mixed integer nonlinear programming
Michael Winkler Presolving, pseudo boolean constraint handler
Jakob Witzig Reoptimization, conflict analysis, mixed integer programming
Kati Jarck Cutting planes, exact integer programming

Student Assistants

Jacob von Holly-Ponientzietz Presolving
Matea Miskovic Primal heuristics

Click here for a list of further contributors ...

Cooperation

SCIP is developed in cooperation with

We appreciate the support of

Related Work and Users

An up-to-date list of publications about SCIP can be found at swMath.org.

Projects at ZIB that use SCIP (incomplete)

Projects using SCIP (outside ZIB, incomplete)

Some Papers that use SCIP

If you know about further projects or papers that use SCIP, please let us know.

SCIP is used by academic and industrial partners all around the world, including

Imprint and privacy statement

© 2025 by Zuse Institute Berlin (ZIB). For the imprint and privacy statement we refer to the Imprint of ZIB with the following additions and modifications:

Download form

The number of SCIP downloads is tracked and used to generate statistics about the downloads and to generate the world map of download locations. The personal information is used to distinguish the number of downloads from the number of users per year that might download more than one version or archive. In addition to the privacy statements of ZIB, we hereby declare that your name and affiliation recorded for the SCIP download is used for purposes of granting licenses and for statistics about software downloads, and is processed and stored on our server for the duration of a year.