Scippy

SCIP

Solving Constraint Integer Programs

benderscut_feas.h
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file benderscut_feas.h
26 * @ingroup BENDERSCUTS
27 * @brief Standard feasibility cuts for Benders' decomposition
28 * @author Stephen J. Maher
29 *
30 * The classical Benders' decomposition feasibility cuts arise from an infeasible instance of the Benders' decomposition
31 * subproblem.
32 * Consider the linear Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input:
33 * \f[
34 * z(\bar{x}) = \min\{d^{T}y : Ty \geq h - H\bar{x}, y \geq 0\}
35 * \f]
36 * If the subproblem is infeasible as a result of the solution \f$\bar{x}\f$, then the Benders' decomposition
37 * feasibility cut can be generated from the dual ray. Let \f$w\f$ be the vector corresponding to the dual ray of the
38 * Benders' decomposition subproblem. The resulting cut is:
39 * \f[
40 * 0 \geq w^{T}(h - Hx)
41 * \f]
42 *
43 * Next, consider the nonlinear Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input:
44 * \f[
45 * z(\bar{x}) = \min\{d^{T}y : g(\bar{x}, y) \leq 0, y \geq 0\}
46 * \f]
47 * If the subproblem is infeasible as a result of the solution \f$\bar{x}\f$, then the Benders' decomposition
48 * feasibility cut can be generated from a minimal infeasible solution, i.e., a solution of the NLP
49 * \f[
50 * \min\left\{\sum_i u_i : g(\bar{x}, y) \leq u, y \geq 0, u \geq 0\right\}
51 * \f]
52 * Let \f$\bar{y}\f$, \f$w\f$ be the vectors corresponding to the primal and dual solution of this auxiliary NLP.
53 * The resulting cut is:
54 * \f[
55 * 0 \geq w^{T}\left(g(\bar{x},\bar{y}) + \nabla_x g(\bar{x},\bar{y}) (x - \bar{x})\right)
56 * \f]
57 * Note, that usually NLP solvers already provide a minimal infeasible solution when declaring the Benders'
58 * decomposition subproblem as infeasible.
59 */
60
61/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
62
63#ifndef __SCIP_BENDERSCUT_FEAS_H__
64#define __SCIP_BENDERSCUT_FEAS_H__
65
66
67#include "scip/def.h"
68#include "scip/type_benders.h"
69#include "scip/type_retcode.h"
70#include "scip/type_scip.h"
71
72#ifdef __cplusplus
73extern "C" {
74#endif
75
76/** creates the Standard Feasibility Benders' decomposition cuts and includes it in SCIP
77 *
78 * @ingroup BenderscutIncludes
79 */
80SCIP_EXPORT
82 SCIP* scip, /**< SCIP data structure */
83 SCIP_BENDERS* benders /**< Benders' decomposition */
84 );
85
86#ifdef __cplusplus
87}
88#endif
89
90#endif
common defines and data types used in all packages of SCIP
SCIP_RETCODE SCIPincludeBenderscutFeas(SCIP *scip, SCIP_BENDERS *benders)
type definitions for Benders' decomposition methods
type definitions for return codes for SCIP methods
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
type definitions for SCIP's main datastructure