Scippy

SCIP

Solving Constraint Integer Programs

benderscut_int.h
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file benderscut_int.h
26 * @ingroup BENDERSCUTS
27 * @brief Generates a Laporte and Louveaux Benders' decomposition integer cut
28 * @author Stephen J. Maher
29 *
30 * The classical Benders' decomposition algorithm is only applicable to problems with continuous second stage variables.
31 * Laporte and Louveaux (1993) developed a method for generating cuts when Benders' decomposition is applied to problem
32 * with discrete second stage variables. However, these cuts are only applicable when the master problem is a pure
33 * binary problem.
34 *
35 * The integer optimality cuts are a point-wise underestimator of the optimal subproblem objective function value.
36 * Similar to benderscuts_opt.c, an auxiliary variable, \f$\varphi\f$. is required in the master problem as a lower
37 * bound on the optimal objective function value for the Benders' decomposition subproblem.
38 *
39 * Consider the Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input:
40 * \f[
41 * z(\bar{x}) = \min\{d^{T}y : Ty \geq h - H\bar{x}, y \mbox{ integer}\}
42 * \f]
43 * If the subproblem is feasible, and \f$z(\bar{x}) > \varphi\f$ (indicating that the current underestimators are not
44 * optimal) then the Benders' decomposition integer optimality cut can be generated from the optimal solution of the
45 * subproblem. Let \f$S_{r}\f$ be the set of indicies for master problem variables that are 1 in \f$\bar{x}\f$ and
46 * \f$L\f$ a known lowerbound on the subproblem objective function value.
47 *
48 * The resulting cut is:
49 * \f[
50 * \varphi \geq (z(\bar{x}) - L)(\sum_{i \in S_{r}}(x_{i} - 1) + \sum_{i \notin S_{r}}x_{i} + 1)
51 * \f]
52 *
53 * Laporte, G. & Louveaux, F. V. The integer L-shaped method for stochastic integer programs with complete recourse
54 * Operations Research Letters, 1993, 13, 133-142
55 */
56
57/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
58
59#ifndef __SCIP_BENDERSCUT_INT_H__
60#define __SCIP_BENDERSCUT_INT_H__
61
62
63#include "scip/def.h"
64#include "scip/type_benders.h"
65#include "scip/type_retcode.h"
66#include "scip/type_scip.h"
67
68#ifdef __cplusplus
69extern "C" {
70#endif
71
72/** creates the integer optimality cut for Benders' decomposition cut and includes it in SCIP
73 *
74 * @ingroup BenderscutIncludes
75 */
76SCIP_EXPORT
78 SCIP* scip, /**< SCIP data structure */
79 SCIP_BENDERS* benders /**< Benders' decomposition */
80 );
81
82#ifdef __cplusplus
83}
84#endif
85
86#endif
common defines and data types used in all packages of SCIP
SCIP_RETCODE SCIPincludeBenderscutInt(SCIP *scip, SCIP_BENDERS *benders)
type definitions for Benders' decomposition methods
type definitions for return codes for SCIP methods
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
type definitions for SCIP's main datastructure