Scippy

SCIP

Solving Constraint Integer Programs

presol_qpkktref.h
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file presol_qpkktref.h
26 * @ingroup PRESOLVERS
27 * @brief qpkktref presolver
28 * @author Tobias Fischer
29 *
30 * This presolver tries to add the KKT conditions as additional (redundant) constraints to the (mixed-binary) quadratic
31 * program
32 * \f[
33 * \begin{array}{ll}
34 * \min & x^T Q x + c^T x + d \\
35 * & A x \leq b, \\
36 * & x \in \{0, 1\}^{p} \times R^{n-p}.
37 * \end{array}
38 * \f]
39 *
40 * We first check if the structure of the program is like (QP), see the documentation of the function
41 * checkConsQuadraticProblem().
42 *
43 * If the problem is known to be bounded (all variables have finite lower and upper bounds), then we add the KKT
44 * conditions. For a continuous QPs the KKT conditions have the form
45 * \f[
46 * \begin{array}{ll}
47 * Q x + c + A^T \mu = 0,\\
48 * Ax \leq b,\\
49 * \mu_i \cdot (Ax - b)_i = 0, & i \in \{1, \dots, m\},\\
50 * \mu \geq 0.
51 * \end{array}
52 * \f]
53 * where \f$\mu\f$ are the Lagrangian variables. Each of the complementarity constraints \f$\mu_i \cdot (Ax - b)_i = 0\f$
54 * is enforced via an SOS1 constraint for \f$\mu_i\f$ and an additional slack variable \f$s_i = (Ax - b)_i\f$.
55 *
56 * For mixed-binary QPs, the KKT-like conditions are
57 * \f[
58 * \begin{array}{ll}
59 * Q x + c + A^T \mu + I_J \lambda = 0,\\
60 * Ax \leq b,\\
61 * x_j \in \{0,1\} & j \in J,\\
62 * (1 - x_j) \cdot z_j = 0 & j \in J,\\
63 * x_j \cdot (z_j - \lambda_j) = 0 & j \in J,\\
64 * \mu_i \cdot (Ax - b)_i = 0 & i \in \{1, \dots, m\},\\
65 * \mu \geq 0,
66 * \end{array}
67 * \f]
68 * where \f$J = \{1,\dots, p\}\f$, \f$\mu\f$ and \f$\lambda\f$ are the Lagrangian variables, and \f$I_J\f$ is the
69 * submatrix of the \f$n\times n\f$ identity matrix with columns indexed by \f$J\f$. For the derivation of the KKT-like
70 * conditions, see
71 *
72 * Branch-And-Cut for Complementarity and Cardinality Constrained Linear Programs,@n
73 * Tobias Fischer, PhD Thesis (2016)
74 *
75 * Algorithmically:
76 *
77 * - we handle the quadratic term variables of the quadratic constraint like in the method
78 * presolveAddKKTQuadQuadraticTerms()
79 * - we handle the bilinear term variables of the quadratic constraint like in the method presolveAddKKTQuadBilinearTerms()
80 * - we handle the linear term variables of the quadratic constraint like in the method presolveAddKKTQuadLinearTerms()
81 * - we handle linear constraints in the method presolveAddKKTLinearConss()
82 * - we handle aggregated variables in the method presolveAddKKTAggregatedVars()
83 *
84 * we have a hashmap from each variable to the index of the dual constraint in the KKT conditions.
85 */
86
87/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
88
89#ifndef __SCIP_PRESOL_QPKKTREF_H__
90#define __SCIP_PRESOL_QPKKTREF_H__
91
92#include "scip/def.h"
93#include "scip/type_retcode.h"
94#include "scip/type_scip.h"
95
96#ifdef __cplusplus
97extern "C" {
98#endif
99
100/** creates the QP KKT reformulation presolver and includes it in SCIP
101 *
102 * @ingroup PresolverIncludes
103 */
104SCIP_EXPORT
106 SCIP* scip /**< SCIP data structure */
107 );
108
109#ifdef __cplusplus
110}
111#endif
112
113#endif
common defines and data types used in all packages of SCIP
SCIP_RETCODE SCIPincludePresolQPKKTref(SCIP *scip)
type definitions for return codes for SCIP methods
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
type definitions for SCIP's main datastructure