Scippy

SCIP

Solving Constraint Integer Programs

sepa_minor.h
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file sepa_minor.h
26 * @ingroup SEPARATORS
27 * @brief principal minor separator
28 * @author Benjamin Mueller
29 *
30 * This separator detects all principal minors of the matrix \f$ xx' \f$ for which all auxiliary variables \f$ X \f$
31 * exist, i.e., two indices \f$ i \neq j \f$ such that \f$ X_{ii} \f$, \f$ X_{jj} \f$, and \f$ X_{ij} \f$ exist. Because
32 * \f$ X - xx' \f$ is required to be positive semi-definite, it follows that the matrix
33 *
34 * \f[
35 * A(x,X) = \begin{bmatrix} 1 & x_i & x_j \\ x_i & X_{ii} & X_{ij} \\ x_j & X_{ij} & X_{jj} \end{bmatrix}
36 * \f]
37 *
38 * is also required to be positive semi-definite. Let \f$ v \f$ be a negative eigenvector for \f$ A(x^*,X^*) \f$ in a
39 * point \f$ (x^*,X^*) \f$, which implies that \f$ v' A(x^*,X^*) v < 0 \f$. To cut off \f$ (x^*,X^*) \f$, the separator
40 * computes the globally valid linear inequality \f$ v' A(x,X) v \ge 0 \f$.
41 *
42 *
43 * To identify which entries of the matrix X exist, we (the separator) iterate over the available nonlinear constraints.
44 * For each constraint, we explore its expression and collect all nodes (expressions) of the form
45 * - \f$x^2\f$
46 * - \f$y \cdot z\f$
47 *
48 * Then, we go through the found bilinear terms \f$(yz)\f$ and if the corresponding \f$y^2\f$ and \f$z^2\f$ exist, then we have found
49 * a minor.
50 *
51 * For circle packing instances, the minor cuts are not really helpful (see [Packing circles in a square: a theoretical
52 * comparison of various convexification techniques](http://www.optimization-online.org/DB_HTML/2017/03/5911.html)).
53 * Furthermore, the performance was negatively affected, thus circle packing constraint are identified and ignored in
54 * the above algorithm. This behavior is controlled with the parameter "separating/minor/ignorepackingconss".
55 */
56
57/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
58
59#ifndef __SCIP_SEPA_MINOR_H__
60#define __SCIP_SEPA_MINOR_H__
61
62
63#include "scip/scip.h"
64
65#ifdef __cplusplus
66extern "C" {
67#endif
68
69/** creates the minor separator and includes it in SCIP
70 *
71 * @ingroup SeparatorIncludes
72 */
73SCIP_EXPORT
75 SCIP* scip /**< SCIP data structure */
76 );
77
78/**@addtogroup SEPARATORS
79 *
80 * @{
81 */
82
83/** @} */
84
85#ifdef __cplusplus
86}
87#endif
88
89#endif
SCIP_RETCODE SCIPincludeSepaMinor(SCIP *scip)
Definition: sepa_minor.c:880
SCIP callable library.
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63