Scippy

SCIP

Solving Constraint Integer Programs

branch_distribution.h
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file branch_distribution.h
26 * @ingroup BRANCHINGRULES
27 * @brief probability based branching rule based on an article by J. Pryor and J.W. Chinneck
28 * @author Gregor Hendel
29 *
30 * The distribution branching rule selects a variable based on its impact on row activity distributions. More formally,
31 * let \f$ a(x) = a_1 x_1 + \dots + a_n x_n \leq b \f$ be a row of the LP. Let further \f$ l_i, u_i \in R\f$ denote the
32 * (finite) lower and upper bound, respectively, of the \f$ i \f$-th variable \f$x_i\f$.
33 * Viewing every variable \f$x_i \f$ as (continuously) uniformly distributed within its bounds, we can approximately
34 * understand the row activity \f$a(x)\f$ as a gaussian random variate with mean value \f$ \mu = E[a(x)] = \sum_i a_i\frac{l_i + u_i}{2}\f$
35 * and variance \f$ \sigma^2 = \sum_i a_i^2 \sigma_i^2 \f$, with \f$ \sigma_i^2 = \frac{(u_i - l_i)^2}{12}\f$ for
36 * continuous and \f$ \sigma_i^2 = \frac{(u_i - l_i + 1)^2 - 1}{12}\f$ for discrete variables.
37 * With these two parameters, we can calculate the probability to satisfy the row in terms of the cumulative distribution
38 * of the standard normal distribution: \f$ P(a(x) \leq b) = \Phi(\frac{b - \mu}{\sigma})\f$.
39 *
40 * The impact of a variable on the probability to satisfy a constraint after branching can be estimated by altering
41 * the variable contribution to the sums described above. In order to keep the tree size small,
42 * variables are preferred which decrease the probability
43 * to satisfy a row because it is more likely to create infeasible subproblems.
44 *
45 * The selection of the branching variable is subject to the parameter @p scoreparam. For both branching directions,
46 * an individual score is calculated. Available options for scoring methods are:
47 * - @b d: select a branching variable with largest difference in satisfaction probability after branching
48 * - @b l: lowest cumulative probability amongst all variables on all rows (after branching).
49 * - @b h: highest cumulative probability amongst all variables on all rows (after branching).
50 * - @b v: highest number of votes for lowering row probability for all rows a variable appears in.
51 * - @b w: highest number of votes for increasing row probability for all rows a variable appears in.
52 *
53 * If the parameter @p usescipscore is set to @a TRUE, a single branching score is calculated from the respective
54 * up and down scores as defined by the SCIP branching score function (see advanced branching parameter @p scorefunc),
55 * otherwise, the variable with the single highest score is selected, and the maximizing direction is assigned
56 * higher branching priority.
57 *
58 * The original idea of probability based branching schemes appeared in:
59 *
60 * J. Pryor and J.W. Chinneck:@n
61 * Faster Integer-Feasibility in Mixed-Integer Linear Programs by Branching to Force Change@n
62 * Computers and Operations Research, vol. 38, 2011, p. 1143–1152@n
63 * (http://www.sce.carleton.ca/faculty/chinneck/docs/PryorChinneck.pdf)
64 */
65
66/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
67
68#ifndef __SCIP_BRANCH_DISTRIBUTION_H__
69#define __SCIP_BRANCH_DISTRIBUTION_H__
70
71
72#include "scip/def.h"
73#include "scip/type_lp.h"
74#include "scip/type_retcode.h"
75#include "scip/type_scip.h"
76#include "scip/type_var.h"
77
78#ifdef __cplusplus
79extern "C" {
80#endif
81
82/** creates the distribution branching rule and includes it in SCIP
83 *
84 * @ingroup BranchingRuleIncludes
85 */
86SCIP_EXPORT
88 SCIP* scip /**< SCIP data structure */
89 );
90
91/**@addtogroup BRANCHINGRULES
92 *
93 * @{
94 */
95
96/** calculate the variable's distribution parameters (mean and variance) for the bounds specified in the arguments.
97 * special treatment of infinite bounds necessary */
98SCIP_EXPORT
100 SCIP* scip, /**< SCIP data structure */
101 SCIP_Real varlb, /**< variable lower bound */
102 SCIP_Real varub, /**< variable upper bound */
103 SCIP_VARTYPE vartype, /**< type of the variable */
104 SCIP_Real* mean, /**< pointer to store mean value */
105 SCIP_Real* variance /**< pointer to store the variance of the variable uniform distribution */
106 );
107
108/** calculates the cumulative distribution P(-infinity <= x <= value) that a normally distributed
109 * random variable x takes a value between -infinity and parameter \p value.
110 *
111 * The distribution is given by the respective mean and deviation. This implementation
112 * uses the error function erf().
113 */
114SCIP_EXPORT
116 SCIP* scip, /**< current SCIP */
117 SCIP_Real mean, /**< the mean value of the distribution */
118 SCIP_Real variance, /**< the square of the deviation of the distribution */
119 SCIP_Real value /**< the upper limit of the calculated distribution integral */
120 );
121
122/** calculates the probability of satisfying an LP-row under the assumption
123 * of uniformly distributed variable values.
124 *
125 * For inequalities, we use the cumulative distribution function of the standard normal
126 * distribution PHI(rhs - mu/sqrt(sigma2)) to calculate the probability
127 * for a right hand side row with mean activity mu and variance sigma2 to be satisfied.
128 * Similarly, 1 - PHI(lhs - mu/sqrt(sigma2)) is the probability to satisfy a left hand side row.
129 * For equations (lhs==rhs), we use the centeredness measure p = min(PHI(lhs'), 1-PHI(lhs'))/max(PHI(lhs'), 1 - PHI(lhs')),
130 * where lhs' = lhs - mu / sqrt(sigma2).
131 */
132SCIP_EXPORT
134 SCIP* scip, /**< current scip */
135 SCIP_ROW* row, /**< the row */
136 SCIP_Real mu, /**< the mean value of the row distribution */
137 SCIP_Real sigma2, /**< the variance of the row distribution */
138 int rowinfinitiesdown, /**< the number of variables with infinite bounds to DECREASE activity */
139 int rowinfinitiesup /**< the number of variables with infinite bounds to INCREASE activity */
140 );
141
142/** update the up- and downscore of a single variable after calculating the impact of branching on a
143 * particular row, depending on the chosen score parameter
144 */
145SCIP_EXPORT
147 SCIP* scip, /**< current SCIP pointer */
148 SCIP_Real currentprob, /**< the current probability */
149 SCIP_Real newprobup, /**< the new probability if branched upwards */
150 SCIP_Real newprobdown, /**< the new probability if branched downwards */
151 SCIP_Real* upscore, /**< pointer to store the new score for branching up */
152 SCIP_Real* downscore, /**< pointer to store the new score for branching down */
153 char scoreparam /**< parameter to determine the way the score is calculated */
154 );
155
156/** @} */
157
158#ifdef __cplusplus
159}
160#endif
161
162#endif
common defines and data types used in all packages of SCIP
#define SCIP_Real
Definition: def.h:172
SCIP_RETCODE SCIPupdateDistributionScore(SCIP *scip, SCIP_Real currentprob, SCIP_Real newprobup, SCIP_Real newprobdown, SCIP_Real *upscore, SCIP_Real *downscore, char scoreparam)
SCIP_Real SCIProwCalcProbability(SCIP *scip, SCIP_ROW *row, SCIP_Real mu, SCIP_Real sigma2, int rowinfinitiesdown, int rowinfinitiesup)
void SCIPvarCalcDistributionParameters(SCIP *scip, SCIP_Real varlb, SCIP_Real varub, SCIP_VARTYPE vartype, SCIP_Real *mean, SCIP_Real *variance)
SCIP_Real SCIPcalcCumulativeDistribution(SCIP *scip, SCIP_Real mean, SCIP_Real variance, SCIP_Real value)
SCIP_RETCODE SCIPincludeBranchruleDistribution(SCIP *scip)
type definitions for LP management
type definitions for return codes for SCIP methods
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
type definitions for SCIP's main datastructure
type definitions for problem variables
enum SCIP_Vartype SCIP_VARTYPE
Definition: type_var.h:73