

A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem

SCIP Workshop 2018, Aachen

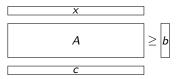
Markó Horváth · Tamás Kis

Institute for Computer Science and Control Hungarian Academy of Sciences

Outline

- 1. Introduction Mathematical background (if needed)
 - Column Generation, Branch-and-Price
- 2. Introduction Integrated Vehicle and Crew Scheduling Problem (MDVCSP)
 - Vehicle Scheduling, Crew Scheduling
- 3. A Branch-and-Price method for the MDVCSP
 - Modelling approach
 - Solution approach (branching strategies, pricing variables, etc.)
- 4. Computational experiments

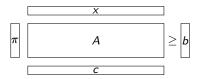
Column Generation approach for Linear Programs



Master Problem

$$\min \{cx : Ax \ge b, x \ge 0\}$$

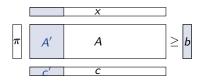
Column Generation approach for Linear Programs



Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0\right\} \\ = \max\left\{\pi b:\pi A\leq c,\pi\geq 0\right\}$$

Column Generation approach for Linear Programs



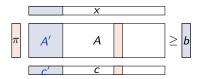
Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0\right\} \\ = \max\left\{\pi b:\pi A\leq c,\pi\geq 0\right\}$$

Restricted Master Problem (RMP)

$$\min \{c'x : A'x \ge b, x \ge 0\}$$

Column Generation approach for Linear Programs



Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0\right\} \\ = \max\left\{\pi b:\pi A\leq c,\pi\geq 0\right\}$$

Restricted Master Problem (RMP)

$$\min \{c'x : A'x \ge b, x \ge 0\}$$

Variable Pricing / Column Generation

iteratively add new variables (i.e., columns) with negative reduced cost (that is, $\bar{c} = c - \pi A$) to the problem

Branch-and-Price method for Integer Linear Programs

Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0,x\in\mathbb{Z}^d\right\}$$

Branch-and-Price \approx Branch-and-Bound + Column Generation

Branch-and-Price method for Integer Linear Programs

Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0,x\in\mathbb{Z}^d\right\}$$

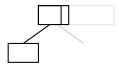
Branch-and-Price \approx Branch-and-Bound + Column Generation

Branch-and-Price method for Integer Linear Programs

Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0,x\in\mathbb{Z}^d\right\}$$

Branch-and-Price \approx Branch-and-Bound + Column Generation

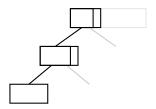


Branch-and-Price method for Integer Linear Programs

Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0,x\in\mathbb{Z}^d\right\}$$

Branch-and-Price \approx Branch-and-Bound + Column Generation

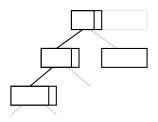


Branch-and-Price method for Integer Linear Programs

Master Problem

$$\min\left\{cx:Ax\geq b,x\geq 0,x\in\mathbb{Z}^d\right\}$$

Branch-and-Price \approx Branch-and-Bound + Column Generation

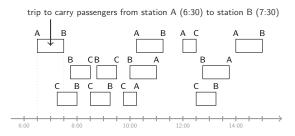


Vehicle Scheduling

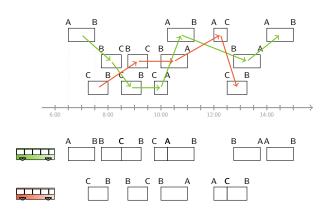
Vehicle Scheduling Problem (VSP):

- Given:
 - a set of timetabled trips
 - a fleet of vehicles divided into depots
- Goal: find an assignment of trips to vehicles such that
 - each trip is assigned exactly once
 - each vehicle performs a feasible sequence of trips
 - · each sequence starts and ends at the same depot
 - asset and operational costs are minimized
- Typically modelled as a multicommodity-flow problem

Vehicle Scheduling



Vehicle Scheduling



Crew Scheduling

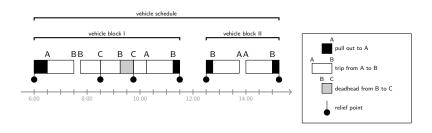


Figure: route of a vehicle and some driver activites

Crew Scheduling

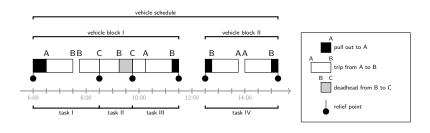


Figure: route of a vehicle and some driver activites

Crew Scheduling

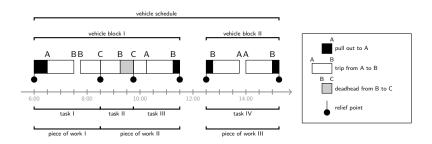


Figure: route of a vehicle and some driver activites

Crew Scheduling

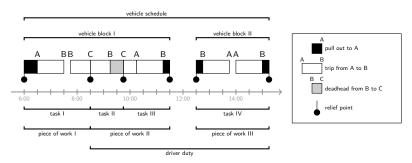


Figure: route of a vehicle and some driver activites

Crew Scheduling

Crew Scheduling Problem (CSP):

- Given:
 - a set of tasks
- **Goal:** find a set of driver duties such that
 - each task is covered by a duty that can be performed by a single driver
 - each duty satisfies a wide variety of federal laws, safety regulations, and (collective) in-house agreements
 - labor costs are minimized
- Typically modelled as a set-partitioning (-covering) problem

Integrated approach

Sequential approach:

- 1. VSP: trips \rightarrow vehicle schedules (and tasks)
- 2. CSP: vehicle schedules (and tasks) \rightarrow driver duties
- seriously criticized because in the mass transit case crew costs mostly dominate vehicle operating costs

Integrated approach:

VCSP: trips → vehicle schedules, driver duties (i.e., simultaneously)

Integrated approach

The set of tasks is not fixed, hence the number of potential duties can be vast even for small-sized problems.

Table: example for an instance with 80 trips

depot	#pieces of work	#duties
1	340763	\sim 7 billion
2	344121	\sim 7.5 billion
3	151244	~ 1.5 billion
4	437611	\sim 10 billion

A Branch-and-Price method for the Multiple-Depot Integrated Vehicle and Crew

Scheduling Problem

Problem definition – Assumptions

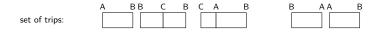
- 1. Each vehicle is assigned to a depot where its daily schedule starts end ends. Each depot is unlimited in capacity, that is, it can store an unlimited number of vehicles.
- 2. A vehicle returns to its depot if the idle time between two consecutive trips is long enough to perform a round trip to the depot.
- 3. Each driver is assigned to a depot and may only conduct tasks on vehicles from this particular depot. However, a duty does not necessarily start and end in this depot. It may have a minimum and maximum duration.
- 4. A driver is required to be present if a vehicle is outside of a depot, while no driver is needed when the vehicle is parked in the depot.
- 5. Drivers may only change their vehicle during a break, i.e., between two pieces of work.

Problem definition – Assumptions

- 6. A piece of work is only restricted by its duration.
- 7. A duty consists of one or two pieces of work. (...)

Table: properties of duty types

	Tripper		Early		Day		Late		Split	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
start time					8:00		13:15			
end time				16:30		18:14				19:30
piece length	0:30	5:00	0:30	5:00	0:30	5:00	0:30	5:00	0:30	5:00
break length	-	-	0:45		0:45		0:45		1:30	
spread time				9:45		9:45		9:45		12:00
working time				9:00		9:00		9:00		9:00



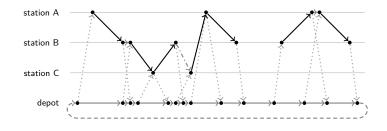
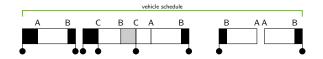


Figure: time-space network for a single depot d



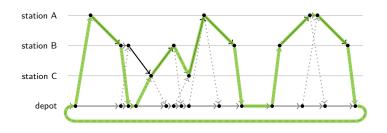


Figure: time-space network for a single depot d

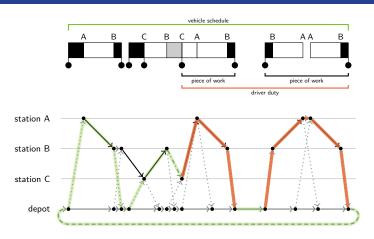


Figure: time-space network for a single depot d

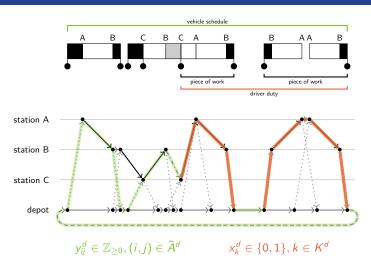


Figure: time-space network for a single depot d

$$\min \sum_{d \in \mathcal{D}} \sum_{ij \in \bar{A}^d} c^d_{ij} y^d_{ij} + \sum_{d \in \mathcal{D}} \sum_{k \in K^d} \tilde{f}^d_k x^d_k \tag{1}$$

$$\sum_{d \in \mathcal{D}} \sum_{k \in \mathcal{K}^d(t)} x_k^d = 1 \qquad \forall \ t \in \mathcal{T}$$
 (2)

$$\sum_{k \in K_{-}^{d}(i)} x_{k}^{d} - \sum_{k \in K_{-}^{d}(i)} x_{k}^{d} = 0 \qquad \forall d \in \mathcal{D}, \forall i \in V^{d} \setminus \bar{V}^{d}(3)$$

$$\sum_{ij\in\bar{A}^d} y_{ij}^d + \sum_{k\in K_+^d(i)} x_k^d - \sum_{ji\in\bar{A}^d} y_{ji}^d - \sum_{k\in K_-^d(i)} x_k^d = 0 \qquad \forall \ d\in\mathcal{D}, \forall \ i\in\bar{V}^d \qquad (4)$$

$$0 \leq y_{ij}^d, y_{ij}^d \in \mathbb{Z} \qquad \forall \ d \in \mathcal{D}, \forall \ ij \in \bar{A}^d$$
 (5)

$$x_d^k \in \{0,1\}$$
 $\forall d \in \mathcal{D}, \forall k \in K^d$ (6)

$$\min \sum_{d \in \mathcal{D}} \sum_{ij \in \bar{A}^d} c^d_{ij} y^d_{ij} + \sum_{d \in \mathcal{D}} \sum_{k \in K^d} \tilde{f}^d_k x^d_k \tag{1}$$

$$\sum_{d \in \mathcal{D}} \sum_{k \in K^d(t)} x_k^d = 1 \qquad \forall \ t \in \mathcal{T}$$
 (2)

$$\sum_{k \in K_{+}^{d}(i)} x_{k}^{d} - \sum_{k \in K_{-}^{d}(i)} x_{k}^{d} = 0 \qquad \forall d \in \mathcal{D}, \forall i \in V^{d} \setminus \bar{V}^{d}(3)$$

$$\sum_{ij\in\bar{A}^d} y_{ij}^d + \sum_{k\in\mathcal{K}_+^d(i)} x_k^d - \sum_{ji\in\bar{A}^d} y_{ji}^d - \sum_{k\in\mathcal{K}_-^d(i)} x_k^d = 0 \qquad \forall \ d\in\mathcal{D}, \forall \ i\in\bar{V}^d \qquad (4)$$

$$0 \leq y_{ij}^d, y_{ij}^d \in \mathbb{Z} \qquad \forall \ d \in \mathcal{D}, \forall \ ij \in \bar{A}^d$$
 (5)

$$x_d^k \in \{0,1\}$$
 $\forall d \in \mathcal{D}, \forall k \in K^d$ (6)

SCIP - Worth to mention!

Variables y;; are implicit integer! (SCIP_VARTYPE_IMPLINT)

Branch-and-Price

- Straightforward idea
- How to
 - ... create initial Restricted Master Problem?
 - ... price out new variables (i.e., driver duties)?
 - ... perform branch on variables? (Note that branching decisions must be taken into consideration during variable pricing)

Branching strategies

- Default 0-1 branching is weak
- Branching strategy 1: Assign trips to depots
 - easy to handle in the pricing problem
- Branching strategy 2: SPP-based branching
 - based on the Ryan-Foster branching scheme (see set-partitioning constraints (2))
 - very inconvenient to handle in the pricing problem

Branching strategies - Assign trips to depots

Let (\bar{x}, \bar{y}) be a fractional solution to the relaxation of the corresponding RMP

Assign trips to depots:

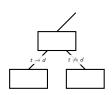
- Some trips may be committed to multiple depots in the LP-solution
- Trip t, depot d (such that $0 < \sum_{k \in K^d} \bar{x}_k^d < 1$)
- Partitioning (two branches)
 - 1. binding branch: require to cover trip t by a duty from depot d
 - 2. banning branch: forbid to cover trip t by a duty from depot d
- Splitting (several branches)
 - 1. jth (binding) branch: require to cover trip t by a duty from depot d_i

Branching strategies – Assign trips to depots

Branching rule (scip::ObjBranchrule, scip_execlp)

- performed if the LP solution of the current problem is fractional
- determine candidate (t, d)

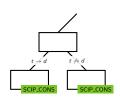
Branching strategies – Assign trips to depots



Branching rule (scip::ObjBranchrule, scip_execlp)

- performed if the LP solution of the current problem is fractional
- determine candidate (t, d)
- create child nodes

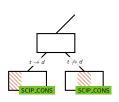
Branching strategies – Assign trips to depots



Branching rule (scip::ObjBranchrule, scip_execlp)

- performed if the LP solution of the current problem is fractional
- determine candidate (t, d)
- create child nodes
- create constraints for child nodes

Branching strategies - Assign trips to depots



Branching rule (scip::ObjBranchrule, scip_execlp)

- performed if the LP solution of the current problem is fractional
- determine candidate (t, d)
- create child nodes
- create constraints for child nodes

Constraint handler (scip::ObjConshdlr, scip_prop)

propagation, i.e, node preprocessing

$$\begin{split} \min \ \sum_{d \in \mathcal{D}} \sum_{ij \in \bar{A}^d} c^d_{ij} y^d_{ij} + \sum_{d \in \mathcal{D}} \sum_{k \in K^d} \tilde{f}^d_k x^d_k \\ \sum_{d \in \mathcal{D}} \sum_{k \in K^d(t)} x^d_k &= 1 \quad \lambda_t \quad \forall \ t \in \mathcal{T} \\ \sum_{k \in K^d_+(i)} x^d_k - \sum_{k \in K^d_-(i)} x^d_k &= 0 \quad \mu^d_i \quad \forall \ d \in \mathcal{D}, \forall \ i \in V^d \setminus \bar{V}^d \\ \sum_{ij \in \bar{A}^d} y^d_{ij} + \sum_{k \in K^d_+(i)} x^d_k - \sum_{ji \in \bar{A}^d} y^d_{ji} - \sum_{k \in K^d_-(i)} x^d_k &= 0 \quad \mu^d_i \quad \forall \ d \in \mathcal{D}, \forall \ i \in \bar{V}^d \\ 0 \leq y^d_{ij}, y^d_{ij} \in \mathbb{Z} \qquad \forall \ d \in \mathcal{D}, \forall \ ij \in \bar{A}^d \\ x^d_d \in \{0,1\} \qquad \forall \ d \in \mathcal{D}, \forall \ k \in K^d \end{split}$$

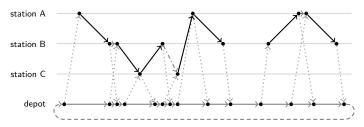


Figure: piece-of-work generation network for a single depot

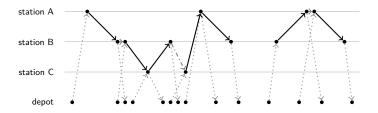


Figure: piece-of-work generation network for a single depot

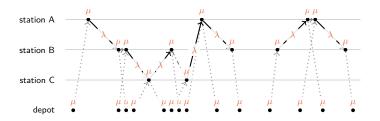


Figure: piece-of-work generation network for a single depot

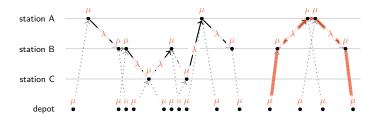


Figure: piece-of-work generation network for a single depot

Pricing variables

Generation of driver duties:

- 1. Generation of pieces of work
 - find shortest path (according to reduced costs) for all source-destination pair
- 2. Generation of duties
 - duties consisting of 1 piece of work: simple enumeration procedure
 - duties consisting of 2 pieces of work: smart pairing procedure

Pricing variables

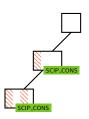
Generation of driver duties:

- 1. Generation of pieces of work
 - find shortest path (according to reduced costs) for all source-destination pair
- 2. Generation of duties
 - duties consisting of 1 piece of work: simple enumeration procedure
 - duties consisting of 2 pieces of work: smart pairing procedure

Branching rules must be taken into consideration during duty generation!

- Assign trips to depots
 - binding branch $(t \rightarrow d)$: remove trip t from the piece generation network of depot $d' \neq d$
 - banning branch $(t \not\rightarrow d)$: remove trip t from the piece generation network of depot d

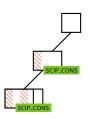
Pricing variables



Pricer (scip::ObjPricer, scip_redcost/scip_farkas)

- called inside the price-and-cut loop of the subproblem solving process if the current LP relaxation is feasible/infeasible
- scip_farkas: similar pricing procedure (Farkas-multipliers, zero objective function)

Pricing variables



Pricer (scip::ObjPricer, scip_redcost/scip_farkas)

- called inside the price-and-cut loop of the subproblem solving process if the current LP relaxation is feasible/infeasible
- scip_farkas: similar pricing procedure (Farkas-multipliers, zero objective function)
- create and add priced variables

Initial Restricted Master Problem

- Contains all of the flow variables (y_{ii}^d)
- Contains a set of duty variables (x_k^d)
 - 1. use fictive columns penalized by a high cost
 - 2. start with an empty set of duty variables (Farkas pricing)
 - 3. obtain a feasible solution for the MDVCSP by using a sequential approach

Implementation details

Test environment and implementation

- C++ programming language
- Branch-and-Price framework: SCIP Optimization Suite (version 3.1.1)
- Graph algorithms: LEMON C++ library (version 1.3.1)

Instances and problem parameters

- Randomly generated problem instances of Dennis Huisman
- 80A: 10 instances (4 depots, 4 stations)
- 100A: 10 instances (4 depots, 5 stations)

Running details

Gap limit: 0.5%; time limit: 20 × number of trips

Evaluation of the branching rules

- Goal: select the most appropriate branching rule for the problem
- Tested on $10 \times 10 = 100$ instances

Table: Summary of experiments on branching rules

Problem	Rule	Status ^a			Bound			Best solution			Time
		0	G	Т	Lower	Upper	Gap	v	d	v+d	
80A	Partitioning	9	50	41	34 772.2	35 410.8	1.8%	9.5	18.5	28.0	755.6
	Splitting	8	49	43	34 769.4	35 481.4	2.0%	9.5	18.6	28.0	777.5
100A	Partitioning	6	49	45	41 624.0	42 464.2	2.0%	11.4	22.1	33.5	1136.6
	Splitting	5	43	52	41 621.7	42 533.2	2.2%	11.4	22.1	33.6	1205.4

a: number of instances that solved to (O)ptimality or where (G)ap limit or (T)ime limit was reached

Evaluation of the integrated method

We compared four methods:

- **Seq.** : sequential approach (used to obtain the initial RMP)
- Int. (first): integrated approach; interrupted right after a feasible solution was found
- Int. (timelimit): integrated approach; interrupted only when the gap/time limit was reached
- Int. [Steinzen et al., 2010]: integrated approach of [Steinzen et al., 2010]

Note that our experiments were performed on a workstation with 4GB RAM, and XEON X5650 CPU of 2.67 GHz, and under Linux operating system, while the experiments of Steinzen et al. [2010] were performed on a Dell OptiPlex GX620 personal computer with an Intel Pentium IV 3.4 GHz processor and 2 GB of main memory under Windows XP.

Evaluation of the integrated method

Table: Comparing sequential and integrated methods

Problem	Method	V	d	v+d	Cost	Time
80A	Seq.	9.2	24.3	33.5	40 588.0	1.2
	Int. (first)	9.6	18.6	28.2	35 668.5	4.1
	Int. (timelimit)	9.5	18.5	28.0	35 456.9	914.6
	Int. [Steinzen et al., 2010]	9.2	19.1	28.2		235.0
100A	Seq.	11.0	28.2	39.2	47 792.7	1.6
	Int. (first)	11.4	22.0	33.4	42 428.5	31.8
	Int. (timelimit)	11.4	21.9	33.3	42 287.4	1007.0
	Int. [Steinzen et al., 2010]	11.0	22.7	33.7		369.0

Thank you for your attention!

Horváth, M., & Kis, T. (2017). Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price. Central European Journal of Operations Research, 1-29.

⊠ marko.horvath@sztaki.mta.hu

References

Ingmar Steinzen, Vitali Gintner, Leena Suhl, and Natalia Kliewer. A time-space network approach for the integrated vehicle-and crew-scheduling problem with multiple depots. Transportation Science, 44(3):367-382, 2010.