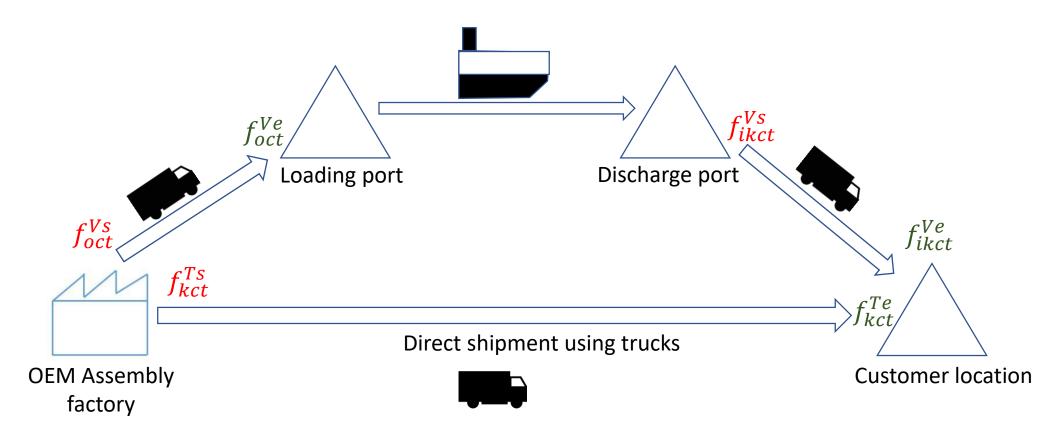


A maritime logistics system design model for automotive distribution

Saurabh Chandra


Automotive industry and market in India

- Industry produced around 25 million vehicles in 2017
- 5 percent per year growth in production volumes from 2016
- Manufacturing clustered in three main locations:
 - North near Delhi
 - West near Mumbai and
 - South in Chennai
- Market spread pan-India in terms of sales
- Domestic distribution is a challenge for all stakeholders
- 96% distribution through roadways
- Government keen to develop alternative modes- coastal and rail

Coastal logistics of vehicles:

Pertinent questions for a new system

- What ships are required for the maritime logistics?
- Which ports and the routes are best?
- What cost savings can be expected with alternative mode?
- How the inventory cost of cargo would impact the logistics share?

Mathematical Model

- Ro-ro liner service network design along a coastline
- Fleet deployment for ro-ro ships for voyages along given routes
- Mode choice among two options- road and coastal
- Inventory routing problem

Objective function

1. Direct truck delivery cost

$$\sum_{k \in \mathcal{K}} \sum_{c \in C_k} \sum_{t \in \mathcal{T}} C_k^T f_{kct}^{Ts}$$

2. Fixed cost of using a ship of type v in the planning horizon

$$\sum_{v \in \mathcal{V}} C_v^{FS} u_v$$

3. Cost of voyages served on various routes

$$\sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}_{\mathcal{V}}} \sum_{t \in \mathcal{T}} C_{vr}^{S} x_{vrt}$$

Objective function terms

4. Cost of first mile trucking

$$\sum_{c \in C} \sum_{t \in \mathcal{T}} C_0^T f_{oct}^{Vs}$$

5. Cost of last mile trucking

$$\sum_{i \in I} \sum_{k \in \mathcal{K}} \sum_{c \in C} \sum_{k \in \mathcal{T}} C_{ikt}^T f_{ikct}^{Vs}$$

6. Variable cost of cargo loading/discharging at port i

$$\sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}_{\mathcal{V}}} \sum_{i \in I_{\mathcal{V}}: i \neq 0} \sum_{t \in \mathcal{T}} C_i^{VH} q_{ivrt}^U$$

Objective function terms- inventory costs

7. Inventory cost at the storage locations

$$\sum_{i \in I} \sum_{c \in C} \sum_{t \in \mathcal{T}} H_{ic} s_{ict}$$

8. Pipeline inventory cost

$$h^{P} \begin{bmatrix} \left(\sum_{i \in I} \sum_{k \in \mathcal{K}} \sum_{c \in C_{k}} \sum_{t \in \mathcal{T}} f_{ikct}^{Te} U_{c} + \sum_{i \in I} \sum_{k \in \mathcal{K}} \sum_{c \in C_{k}} \sum_{t \in \mathcal{T}} f_{ikct}^{Ve} U_{c} \right) - \\ \left(\sum_{k \in \mathcal{K}} \sum_{c \in C_{k}} \sum_{t \in \mathcal{T}} f_{kct}^{Ts} U_{c} + \sum_{c \in C} \sum_{t \in \mathcal{T}} f_{ct}^{Vs} U_{c} \right) \end{bmatrix}$$

Constraints:

Numbers loaded at a loading port = Numbers discharged at subsequent discharge ports

$$q_{vrt}^{L} = \sum_{i \in \mathcal{P}_{\gamma}} q_{ivr(t + \Delta t_{voi}^{V})}^{U}$$

Loading is possible only when a voyage on a route begins on that day.

$$q_{vrt}^L \le x_{ovrt} \overline{Q_v}$$

Number of ships required of a type:

Number of ships of type v serving route rat a point of time t

$$y_{vrt} = \sum_{r \in R_v} \sum_{t \in [t - T_{vr}, t]} x_{vrt}$$

$$u_v \ge y_{vrt}$$

Inventory balance constraints

IIM INDORE

At the origin port:

$$s_{ct}^o = s_{c,t-1}^o + f_{ct}^{Ve} - \sum_{v \in V} \sum_{r \in R_v} q_{vrct}^L$$

$$f_{ct}^{Vs} = f_{c,t+\Delta t_o^T}^{Ve}$$

At the discharge port:

$$s_{ct}^i = s_{c,t-1}^i + \sum_{v \in V} \sum_{r \in R_v} q_{vrct}^U - \sum_{k \in K} f_{ikct}^{Vs}$$

$$f_{ikct}^{Vs} = f_{ikc,t+\Delta t_{ik}^T}^{Ve}$$

Direct trucking flow

$$f_{ckt}^{Ts} = f_{ck,t+\Delta t_{ik}}^{Te}$$

Demand constraint

$$\sum_{i \in I} f_{ikct}^{Ve} + f_{ckt}^{Te} \ge D_{ckt}$$

Conditions on variables

$$x, y \in \{0,1\}$$

$$f, q^L, q^U, s \geq 0$$

Data estimation

- A southern Indian port city (Chennai), home to many auto manufacturers take as base port
- District-wise sales data estimated from secondary sources
- Freight rates estimated from primary sources
- For possible destination ports, all major ports (12) considered
- 10 ship types with varying cost/capacity/speed characteristics considered

Computational results

- MILP modeling of a simpler version of model (without inventory constraints)
- IBM CPLEX 12.6.2 optimization library on Python 2.7.10 programming language.
- Dell Precision T5610 with Intel Xeon CPU E5-2620 v2 @ 2.10 GHz 6 cores CPU and 32.0 GB RAM.

Route options:

- Chennai as main origin/return port
- Routes assumed to follow the geographical sequence
- All combinations considered under the given assumptions
- For each district in India, nearest port will change based on the route
- Total options generated: 2047

Four scenarios were run for comparison:

IIM INDORE

- 1. With only trucking options
- 2. With a single ship under operation and serving only 2 ports in the Western coast
- 3. With both coastal and direct trucking and port charges at GRT, and
- 4. With both coastal and direct trucking and port charges at DWT.

MILP computational results for different scenarios

Scenario	#Ship types	#Ports	#Routes	Opt. objective (mil. USD)	Comp. time* (sec)
1	0	0	0	109.49	1.4
2	1	3	3	101.54	1.6
3	10	12	2047	82.52	19,780
4	10	12	2047	76.28	107,421

^{*} Computational time includes model build-up and solution time to optimality.

Scenario analysis

For 431272 cars sold in 12 months across 261 dealer locations

A. Only direct trucking option (\$ 109.5 million or \$ 254/car)

24.6% cost reduction

B. Port cost charged as GRT (\$82.5 million or \$191/car) 30.3% cost reduction

C. Port cost charged as DWT (\$ 76.3 million or \$ 177/car)

Scenario B: Ports charging w.r.t. GRT

Ship suggested:

S.N	ShipType	Capacity RT	Year built	Max deck height	GRT	DWT	Length (m)	Width (m)	Draft- min	Draft-avg	Draft- max	Speed - avg
6	F	6000	2000	4.9	29317	20144	200	32	6.5	8.2	9.5	12.1
S.N	Speed - max	Var Cost@ sea (\$/day)	Var Cost@ port (\$/day)	Fixed cost (\$/year)	Var. cost @sea(\$/ day)	Var.fuel cost @port(\$/ day)	Capital	Fixed capital Cost/char t. cost (\$/yr)	Mainten ance and repair cost/yr	Crew	V/L insuranc e	Admin costs
6	21.3	17,362	1,511	1,046,424	17,362	1,511	14,185,576	556,075	106,392	50,246	283,712	50,000

Number of ships of this type of be hired for an year: 5

Ship Utilization: 91.32%

CO₂ emission reductions

- CO₂ emissions for Trucks: 3.14 kg/fuel-kg (EEA guidelines 2017)
- CO₂ emissions for ships: 3.17 kg/fuel-kg (Corbett et al., 2009)

Overall reduction in CO_2 emissions = 14.5% approx.

Scenario C: Ports charging w.r.t. DWT

Ship suggested:

S.N	ShipType	Capacity RT	Year built	Max deck height	GRT	DWT	Length (m)	Width (m)	Draft- min	Draft-avg	Draft- max	Speed - avg
4	D	4800	2008	5.3	46800	12315	183	32	4	8.2	9.4	13.2
S.N	Speed - max	Var Cost@ sea (\$/day)	Var Cost@ port (\$/day)	Fixed cost (\$/year)	Var. cost @sea(\$/ day)	Var.fuel cost @port(\$/ day)	Capital	Fixed capital Cost/char t. cost (\$/yr)	Mainten ance and repair cost/yr	Crew cost	V/L insuranc e	Admin costs
4	21.9	11,190	931	760,442	11,190	931	10,101,507	395,979	75,761	36,672	202,030	50,000

Number of ships of this type of be hired for an year: 5

Ship Utilization: 98.24%

Solution approaches planned

- Problem extension with inventory constraints seems to be complex
- We wish to run multiple scenarios for policy analysis
- Bender's partitioning
- Branch and Price
- MILP based rolling horizon heuristic

Thanks

Questions?