lp.c
Go to the documentation of this file.
32 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
63 * using the LP solver activity is potentially faster, but may not be consistent with the SCIP_ROW calculations
509 /* we do not save the farkas coefficient, since it can be recomputed; thus, we invalidate it here */
512 /* if the column was created after performing the storage (possibly during probing), we treat it as implicitly zero;
597 /* if the row was created after performing the storage (possibly during probing), we treat it as basic;
647 #ifdef SCIP_MORE_DEBUG /* enable this to check the sortings within rows (for debugging, very slow!) */
768 /* recompute the loose objective value from scratch, if it was marked to be unreliable before */
797 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
810 /* recompute the pseudo solution value from scratch, if it was marked to be unreliable before */
834 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
852 /* recompute the global pseudo solution value from scratch, if it was marked to be unreliable before */
876 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
958 /** sorts column entries of linked rows currently in the LP such that lower row indices precede higher ones */
989 /** sorts column entries of unlinked rows or rows currently not in the LP such that lower row indices precede higher
1006 SCIPsortPtrRealInt((void**)(&(col->rows[col->nlprows])), &(col->vals[col->nlprows]), &(col->linkpos[col->nlprows]), SCIProwComp, col->len - col->nlprows);
1022 /** sorts row entries of linked columns currently in the LP such that lower column indices precede higher ones */
1037 SCIPsortIntPtrIntReal(row->cols_index, (void**)row->cols, row->linkpos, row->vals, row->nlpcols);
1053 /** sorts row entries of unlinked columns or columns currently not in the LP such that lower column indices precede
1072 SCIPsortIntPtrIntReal(&(row->cols_index[row->nlpcols]), (void**)(&(row->cols[row->nlpcols])), &(row->linkpos[row->nlpcols]), &(row->vals[row->nlpcols]), row->len - row->nlpcols);
1090 /** searches coefficient in part of the column, returns position in col vector or -1 if not found */
1165 /** searches coefficient in part of the row, returns position in col vector or -1 if not found */
1257 /** moves a coefficient in a column to a different place, and updates all corresponding data structures */
1353 /** moves a coefficient in a row to a different place, and updates all corresponding data structures */
1474 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCOEFCHANGED) != 0) )
1479 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1502 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCONSTCHANGED)) )
1507 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1531 if( (row->eventfilter->len > 0 && !(row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWSIDECHANGED)) )
1536 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1542 #ifdef SCIP_MORE_DEBUG /* enable this to check links between columns and rows in LP data structure (for debugging, very slow!) */
1708 /*assert(colSearchCoef(col, row) == -1);*/ /* this assert would lead to slight differences in the solution process */
1718 /* if the row is in current LP and is linked to the column, we have to insert it at the end of the linked LP rows
1732 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1743 /* if the column is in current LP, we have to link it to the row, because otherwise, the primal information
1748 /* this call might swap the current row with the first non-LP/not linked row, s.t. insertion position
1770 /* if the column is in current LP, now both conditions, row->cols[linkpos]->lppos >= 0 and row->linkpos[linkpos] >= 0
1802 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to column <%s> (nunlinked=%d)\n",
1836 /* if row is a linked LP row, move last linked LP coefficient to position of empty slot (deleted coefficient) */
1872 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1918 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2003 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2054 /*assert(rowSearchCoef(row, col) == -1);*/ /* this assert would lead to slight differences in the solution process */
2069 /* if the column is in current LP and is linked to the row, we have to insert it at the end of the linked LP columns
2083 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2096 /* if the row is in current LP, we have to link it to the column, because otherwise, the dual information
2101 /* this call might swap the current column with the first non-LP/not linked column, s.t. insertion position
2123 /* if the row is in current LP, now both conditions, col->rows[linkpos]->lppos >= 0 and col->linkpos[linkpos] >= 0
2164 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to row <%s> (nunlinked=%d)\n",
2202 SCIPerrorMessage("cannot delete a coefficient from the locked unmodifiable row <%s>\n", row->name);
2209 /* if column is a linked LP column, move last linked LP coefficient to position of empty slot (deleted coefficient) */
2255 SCIPerrorMessage("cannot change a coefficient of the locked unmodifiable row <%s>\n", row->name);
2259 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2370 /* this call might swap the current row with the first non-LP/not linked row, but this is of no harm */
2375 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->cols[col->linkpos[col->nlprows-1]] == col);
2376 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->linkpos[col->linkpos[col->nlprows-1]] == col->nlprows-1);
2452 /* this call might swap the current column with the first non-LP/not linked column, but this is of no harm */
2457 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->rows[row->linkpos[row->nlpcols-1]] == row);
2458 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->linkpos[row->linkpos[row->nlpcols-1]] == row->nlpcols-1);
2574 /** checks, that parameter of type int in LP solver has the given value, ignoring unknown parameters */
2599 /** checks, that parameter of type SCIP_Bool in LP solver has the given value, ignoring unknown parameters */
2610 /** checks, that parameter of type SCIP_Real in LP solver has the given value, ignoring unknown parameters */
2641 #define lpCutoffDisabled(set,prob) (set->lp_disablecutoff == 1 || ((set->nactivepricers > 0 || !SCIPprobAllColsInLP(prob, set, lp)) && set->lp_disablecutoff == 2))
2662 /* We disabled the objective limit in the LP solver or we want so solve exactly and thus cannot rely on the LP
2663 * solver's objective limit handling, so we make sure that the objective limit is inactive (infinity). */
2680 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2719 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2762 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2805 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2874 /* We might only set lp->solved to false if fastmip is turned off, since the latter should be the more
3043 /** sets the pricing strategy of the LP solver (given the character representation of the strategy) */
3171 assert((int) SCIP_CLOCKTYPE_CPU == 1 && (int) SCIP_CLOCKTYPE_WALL == 2); /*lint !e506*//*lint !e1564*/
3203 /* we don't check this parameter because SoPlex will always return its current random seed, not the initial one */
3414 SCIPmessageFPrintInfo(messagehdlr, file, "(obj: %.15g) [%.15g,%.15g], ", col->obj, col->lb, col->ub);
3428 /** sorts column entries such that LP rows precede non-LP rows and inside both parts lower row indices precede higher ones
3484 SCIPerrorMessage("coefficient for row <%s> doesn't exist in column <%s>\n", row->name, SCIPvarGetName(col->var));
3600 SCIP_CALL( rowChgCoefPos(row, blkmem, set, eventqueue, lp, col->linkpos[pos], col->vals[pos] + incval) );
3635 * @note: Here we only consider cancellations which can occur during decreasing the oldvalue to newvalue; not the
3674 if( SCIPsetIsLT(set, lp->objsqrnorm, 0.0) || isNewValueUnreliable(set, lp->objsqrnorm, oldvalue) )
3680 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
3706 SCIPsetDebugMsg(set, "changing objective value of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->obj, newobj);
3722 /* in any case, when the sign of the objective (and thereby the best bound) changes, the variable has to enter the
3736 /* update original objective value, as long as we are not in diving or probing and changed objective values */
3765 SCIPsetDebugMsg(set, "changing lower bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->lb, newlb);
3781 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
3810 SCIPsetDebugMsg(set, "changing upper bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->ub, newub);
3826 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
4024 /** calculates the Farkas coefficient y^T A_i of a column i using the given dual Farkas vector y */
4153 /** gets the Farkas value of a column in last LP (which must be infeasible), i.e. the Farkas coefficient y^T A_i times
4306 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4364 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4391 retcode = SCIPlpiStrongbranchInt(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4395 retcode = SCIPlpiStrongbranchFrac(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4428 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4430 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4490 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
4563 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4591 SCIPsetDebugMsg(set, "performing strong branching on %d variables with %d iterations\n", ncols, itlim);
4595 retcode = SCIPlpiStrongbranchesInt(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4597 retcode = SCIPlpiStrongbranchesFrac(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4666 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4668 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4700 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4706 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4710 SCIP_Real* solval, /**< stores LP solution value of column at last strong branching call, or NULL */
4730 /** if strong branching was already applied on the column at the current node, returns the number of LPs solved after
4745 /** marks a column to be not removable from the LP in the current node because it became obsolete */
4755 /* lpRemoveObsoleteCols() does not remove a column if the node number stored in obsoletenode equals the current node number */
4893 /** checks, whether the given scalar scales the given value to an integral number with error in the given bounds */
4898 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
4899 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
4932 * if the row's activity is proven to be integral, the sides are automatically rounded to the next integer
4943 SCIP_Bool integralcontvars, /**< should the coefficients of the continuous variables also be made integral,
4945 SCIP_Real minrounddelta, /**< minimal relative difference of scaled coefficient s*c and integral i,
4947 SCIP_Real maxrounddelta /**< maximal relative difference of scaled coefficient s*c and integral i
4971 SCIPsetDebugMsg(set, "scale row <%s> with %g (tolerance=[%g,%g])\n", row->name, scaleval, minrounddelta, maxrounddelta);
4979 /* scale the row coefficients, thereby recalculating whether the row's activity is always integral;
4980 * if the row coefficients are rounded to the nearest integer value, calculate the maximal activity difference,
4992 /* get local or global bounds for column, depending on the local or global feasibility of the row */
5056 /* scale the row sides, and move the constant to the sides; relax the sides with accumulated delta in order
5093 for( c = 0; c < row->len && SCIPcolIsIntegral(row->cols[c]) && SCIPsetIsIntegral(set, row->vals[c]); ++c )
5117 void* origin, /**< pointer to constraint handler or separator who created the row (NULL if unkown) */
5119 SCIP_Bool modifiable, /**< is row modifiable during node processing (subject to column generation)? */
5129 * in case, for example, lhs > rhs but they are equal with tolerances, one could pass lhs=rhs=lhs+rhs/2 to
5322 SCIPmessageFPrintInfo(messagehdlr, file, "%+.15g<%s> ", row->vals[i], SCIPvarGetName(row->cols[i]->var));
5342 SCIPdebugMessage("capture row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5360 SCIPsetDebugMsg(set, "release row <%s> with nuses=%d and nlocks=%u\n", (*row)->name, (*row)->nuses, (*row)->nlocks);
5372 /** locks an unmodifiable row, which forbids further changes; has no effect on modifiable rows */
5382 SCIPdebugMessage("lock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5387 /** unlocks a lock of an unmodifiable row; a row with no sealed lock may be modified; has no effect on modifiable rows */
5397 SCIPdebugMessage("unlock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5447 SCIPerrorMessage("coefficient for column <%s> doesn't exist in row <%s>\n", SCIPvarGetName(col->var), row->name);
5549 /* coefficient doesn't exist, or sorting is delayed: add coefficient to the end of the row's arrays */
5654 SCIP_CALL( SCIProwChgConstant(row, blkmem, set, stat, eventqueue, lp, row->constant + addval) );
5685 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_LEFT, oldlhs, lhs) );
5717 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_RIGHT, oldrhs, rhs) );
5741 /** tries to find a value, such that all row coefficients, if scaled with this value become integral */
5745 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5746 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5749 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5750 SCIP_Real* intscalar, /**< pointer to store scalar that would make the coefficients integral, or NULL */
5772 /**@todo call misc.c:SCIPcalcIntegralScalar() instead - if usecontvars == FALSE, filter the integer variables first */
5782 SCIPsetDebugMsg(set, "trying to find rational representation for row <%s> (contvars: %u)\n", SCIProwGetName(row), usecontvars);
5783 SCIPdebug( val = 0; ); /* avoid warning "val might be used uninitialized; see SCIPdebugMessage lastval=%g below */
5823 /* try, if row coefficients can be made integral by multiplying them with the reciprocal of the smallest coefficient
5852 SCIPsetDebugMsg(set, " -> val=%g, scaleval=%g, val*scaleval=%g, scalable=%u\n", val, scaleval, val*scaleval, scalable);
5863 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (minval=%g)\n", scaleval, minval);
5881 && (absval * twomultval < 0.5 || !isIntegralScalar(val, twomultval, mindelta, maxdelta, NULL)) )
5905 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (power of 2)\n", twomultval);
5910 /* convert each coefficient into a rational number, calculate the greatest common divisor of the numerators
5930 SCIPsetDebugMsg(set, " -> first rational: val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5950 SCIPsetDebugMsg(set, " -> next rational : val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5958 /* make row coefficients integral by multiplying them with the smallest common multiple of the denominators */
5963 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (rational:%" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ")\n",
5969 SCIPsetDebugMsg(set, " -> rationalizing failed: gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", lastval=%g\n", gcd, scm, val); /*lint !e771*/
5983 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5984 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5987 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5996 SCIP_CALL( SCIProwCalcIntegralScalar(row, set, mindelta, maxdelta, maxdnom, maxscale, usecontvars,
6002 SCIP_CALL( rowScale(row, blkmem, set, eventqueue, stat, lp, intscalar, usecontvars, mindelta, maxdelta) );
6008 /** sorts row entries such that LP columns precede non-LP columns and inside both parts lower column indices precede
6038 /** sorts row, and merges equal column entries (resulting from lazy sorting and adding) into a single entry; removes
6098 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
6101 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6111 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6120 /* if equal entries were merged, we have to recalculate the norms, since the squared Euclidean norm is wrong */
6248 /** returns the feasibility of a row in the current LP solution: negative value means infeasibility */
6265 /** returns the feasibility of a row in the relaxed solution solution: negative value means infeasibility
6327 /** returns the feasibility of a row in the current NLP solution: negative value means infeasibility
6413 assert(!row->integral || EPSISINT(row->pseudoactivity - row->constant, SCIP_DEFAULT_SUMEPSILON));
6444 /** returns the pseudo feasibility of a row in the current pseudo solution: negative value means infeasibility */
6578 /* even if the row is integral, the bounds on the variables used for computing minimum and maximum activity might
6579 * be integral only within feasibility tolerance; this can happen, e.g., if a continuous variable is promoted to
6580 * an (implicit) integer variable and the bounds cannot be adjusted because they are minimally tighter than the
6581 * rounded bound value; hence, the activity may violate integrality; we allow 1000 times the default feasibility
6584 assert(!row->integral || mininfinite || REALABS(row->minactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6586 assert(!row->integral || maxinfinite || REALABS(row->maxactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6797 solcutoffdist = -SCIProwGetLPFeasibility(row, set, stat, lp) / ABS(solcutoffdist); /*lint !e795*/
6843 /** returns whether the row's efficacy with respect to the current LP solution is greater than the minimal cut efficacy */
6900 /** returns whether the row's efficacy with respect to the given primal solution is greater than the minimal cut
7019 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7020 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7021 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7023 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7024 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7025 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7026 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7041 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7045 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7064 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7108 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7133 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7155 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7164 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7231 /* One partition was completely handled, we just have to handle the three remaining partitions:
7233 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7252 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7270 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7312 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7317 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7332 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7376 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7377 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7378 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7380 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7381 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7382 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7383 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7398 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7402 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7421 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7465 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7490 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7512 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7521 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7588 /* One partition was completely handled, we just have to handle the three remaining partitions:
7590 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7609 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7627 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7669 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7674 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7689 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7715 /** returns the degree of parallelism between the hyperplanes defined by the two row vectors v, w:
7767 parallelism = scalarprod / (sqrt((SCIP_Real) SCIProwGetNNonz(row1)) * sqrt((SCIP_Real) SCIProwGetNNonz(row2)));
7779 /** returns the degree of orthogonality between the hyperplanes defined by the two row vectors v, w:
7792 /** gets parallelism of row with objective function: if the returned value is 1, the row is parallel to the objective
7834 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7843 SCIPsetDebugMsg(set, "catch event of type 0x%" SCIP_EVENTTYPE_FORMAT " of row <%s> with handler %p and data %p\n",
7846 SCIP_CALL( SCIPeventfilterAdd(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7858 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7865 SCIPsetDebugMsg(set, "drop event of row <%s> with handler %p and data %p\n", row->name, (void*)eventhdlr, (void*)eventdata);
7867 SCIP_CALL( SCIPeventfilterDel(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7872 /** marks a row to be not removable from the LP in the current node because it became obsolete */
7882 /* lpRemoveObsoleteRows() does not remove a row if the node number stored in obsoletenode equals the current node number */
7938 SCIPdebugMessage("flushing col deletions: shrink LP from %d to %d columns\n", lp->nlpicols, lp->lpifirstchgcol);
7984 if( SCIPsetIsInfinity(set, -col->lb) || (SCIPsetIsLE(set, col->lb, col->lazylb) && !SCIPlpDiving(lp)) )
7992 if( SCIPsetIsInfinity(set, col->ub) || (SCIPsetIsGE(set, col->ub, col->lazyub) && !SCIPlpDiving(lp)) )
8129 SCIPsetDebugMsg(set, "flushing col additions: enlarge LP from %d to %d columns\n", lp->nlpicols, lp->ncols);
8199 SCIPsetDebugMsg(set, "flushing row deletions: shrink LP from %d to %d rows\n", lp->nlpirows, lp->lpifirstchgrow);
8327 SCIPsetDebugMsgPrint(set, " %+gx%d(<%s>)", row->vals[i], lpipos+1, SCIPvarGetName(row->cols[i]->var));
8344 SCIPsetDebugMsg(set, "flushing row additions: enlarge LP from %d to %d rows\n", lp->nlpirows, lp->nrows);
8430 || (!SCIPsetIsInfinity(set, -lpilb) && !SCIPsetIsInfinity(set, -col->flushedlb) && SCIPsetIsFeasEQ(set, lpilb, col->flushedlb)));
8432 || (!SCIPsetIsInfinity(set, lpiub) && !SCIPsetIsInfinity(set, col->flushedub) && SCIPsetIsFeasEQ(set, lpiub, col->flushedub)));
8480 SCIPsetDebugMsg(set, "flushing objective changes: change %d objective values of %d changed columns\n", nobjchg, lp->nchgcols);
8494 SCIPsetDebugMsg(set, "flushing bound changes: change %d bounds of %d changed columns\n", nbdchg, lp->nchgcols);
8595 SCIPsetDebugMsg(set, "flushing side changes: change %d sides of %d rows\n", nchg, lp->nchgrows);
8677 SCIPsetDebugMsg(set, "flushing LP changes: old (%d cols, %d rows), nchgcols=%d, nchgrows=%d, firstchgcol=%d, firstchgrow=%d, new (%d cols, %d rows), flushed=%u\n",
8678 lp->nlpicols, lp->nlpirows, lp->nchgcols, lp->nchgrows, lp->lpifirstchgcol, lp->lpifirstchgrow, lp->ncols, lp->nrows, lp->flushed);
8699 /* if the cutoff bound was changed in between and it is not disabled (e.g. for column generation),
8701 if( lp->cutoffbound != lp->lpiobjlim && lp->ncols > 0 && ! lpCutoffDisabled(set, prob) ) /*lint !e777*/
8798 assert(col->flushedlb == (SCIPsetIsInfinity(set, -col->lb) ? -SCIPlpiInfinity(lp->lpi) : col->lb)); /*lint !e777*/
8799 assert(col->flushedub == (SCIPsetIsInfinity(set, col->ub) ? SCIPlpiInfinity(lp->lpi) : col->ub)); /*lint !e777*/
8830 assert(row->flushedlhs == (SCIPsetIsInfinity(set, -row->lhs) ? -SCIPlpiInfinity(lp->lpi) : row->lhs - row->constant)); /*lint !e777*/
8831 assert(row->flushedrhs == (SCIPsetIsInfinity(set, row->rhs) ? SCIPlpiInfinity(lp->lpi) : row->rhs - row->constant)); /*lint !e777*/
9144 (*lp)->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9216 "LP Solver <%s>: objective limit cannot be set -- can lead to unnecessary simplex iterations\n",
9224 "LP Solver <%s>: primal feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9232 "LP Solver <%s>: dual feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9240 "LP Solver <%s>: barrier convergence tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9279 "LP Solver <%s>: iteration limit cannot be set -- can lead to unnecessary simplex iterations\n",
9301 "LP Solver <%s>: row representation of the basis not available -- SCIP parameter lp/rowrepswitch has no effect\n",
9304 SCIP_CALL( lpSetIntpar(*lp, SCIP_LPPAR_POLISHING, ((*lp)->lpisolutionpolishing ? 1 : 0), &success) );
9309 "LP Solver <%s>: solution polishing not available -- SCIP parameter lp/solutionpolishing has no effect\n",
9317 "LP Solver <%s>: refactorization interval not available -- SCIP parameter lp/refactorinterval has no effect\n",
9324 "LP Solver <%s>: condition number limit for the basis not available -- SCIP parameter lp/conditionlimit has no effect\n",
9331 "LP Solver <%s>: markowitz threshhold not available -- SCIP parameter lp/minmarkowitz has no effect\n",
9353 /* Check that infinity value of LP-solver is at least as large as the one used in SCIP. This is necessary, because we
9357 SCIPerrorMessage("The infinity value of the LP solver has to be at least as large as the one of SCIP.\n");
9407 /** resets the LP to the empty LP by removing all columns and rows from LP, releasing all rows, and flushing the
9428 lp->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9462 SCIPsetDebugMsg(set, "adding column <%s> to LP (%d rows, %d cols)\n", SCIPvarGetName(col->var), lp->nrows, lp->ncols);
9522 SCIPsetDebugMsg(set, "adding row <%s> to LP (%d rows, %d cols)\n", row->name, lp->nrows, lp->ncols);
9562 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9570 /** method checks if all columns in the lazycols array have at least one lazy bound and also have a counter part in the
9571 * cols array; furthermore, it is checked if columns in the cols array which have a lazy bound have a counter part in
9591 assert(!SCIPsetIsInfinity(set, lp->lazycols[i]->lazyub) || !SCIPsetIsInfinity(set, -lp->lazycols[i]->lazylb));
9598 assert(!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb));
9605 /* check if each column in the column array which has at least one lazy bound has a counter part in the lazy column *
9620 assert(contained == (!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb)));
9747 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9810 /** gets all indices of basic columns and rows: index i >= 0 corresponds to column i, index i < 0 to row -i-1 */
9827 /** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
9892 /** gets a row from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A) */
9915 /** gets a column from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A),
9939 /** calculates a weighted sum of all LP rows; for negative weights, the left and right hand side of the corresponding
9947 SCIP_REALARRAY* sumcoef, /**< array to store sum coefficients indexed by variables' probindex */
9969 SCIP_CALL( SCIPrealarrayExtend(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, 0, prob->nvars-1) );
9994 SCIP_CALL( SCIPrealarrayIncVal(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, idx, weights[r] * row->vals[i]) );
10060 SCIP_Bool wasprimchecked, /**< true if the LP solution has passed the primal feasibility check */
10062 SCIP_Bool wasdualchecked /**< true if the LP solution has passed the dual feasibility check */
10083 /* @todo: setting feasibility to TRUE might be wrong because in probing mode, the state is even saved when the LP was
10205 SCIPsetDebugMsg(set, "setting LP upper objective limit from %g to %g\n", lp->cutoffbound, cutoffbound);
10207 /* if the objective function was changed in diving, the cutoff bound has no meaning (it will be set correctly
10216 /* if the cutoff bound is increased, and the LP was proved to exceed the old cutoff, it is no longer solved */
10224 /* if the cutoff bound is decreased below the current optimal value, the LP now exceeds the objective limit;
10225 * if the objective limit in the LP solver was disabled, the solution status of the LP is not changed
10260 SCIPsetDebugMsg(set, "setting LP primal feasibility tolerance from %g to %g\n", lp->feastol, newfeastol);
10274 * Sets primal feasibility tolerance to min of numerics/lpfeastolfactor * numerics/feastol and relaxfeastol.
10286 SCIPlpSetFeastol(lp, set, MIN(SCIPsetRelaxfeastol(set), SCIPsetLPFeastolFactor(set) * SCIPsetFeastol(set))); /*lint !e666*/
10314 /** calls LPI to perform primal simplex, measures time and counts iterations, gets basis feasibility status */
10321 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10336 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10337 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nprimallps, stat->ndivinglps);
10345 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10347 SCIPsetDebugMsg(set, "wrote LP to file <%s> (primal simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10380 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10466 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10479 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10494 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10495 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10503 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10505 SCIPsetDebugMsg(set, "wrote LP to file <%s> (dual simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10538 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10624 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10630 /** calls LPI to perform lexicographic dual simplex to find a lexicographically minimal optimal solution, measures time and counts iterations
10639 * We do, however, not aim for the exact lexicographically minimal optimal solutions, but perform a
10642 * More precisely, we first solve the problem with the dual simplex algorithm. Then we fix those
10644 * variables) that have nonzero reduced cost. This fixes the objective function value, because only
10647 * Then the not yet fixed variables are considered in turn. If they are at their lower bounds and
10648 * nonbasic, they are fixed to this bound, since their value cannot be decreased further. Once a
10649 * candidate is found, we set the objective to minimize this variable. We run the primal simplex
10651 * variables out of the basis have been fixed to their lower bound, the basis is also not primal
10652 * feasible anymore). After the optimization, we again fix nonbasic variables that have nonzero
10659 * @todo Can we skip the consideration of basic variables that are at their lower bound? How can we
10660 * guarantee that these variables will not be changed in later stages? We can fix these variables
10670 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10687 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10688 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10713 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10952 /* check columns: find first candidate (either basic or nonbasic and zero reduced cost) and fix variables */
11079 /* solve with primal simplex, because we are primal feasible, but not necessarily dual feasible */
11084 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") in lex-dual: primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11162 while( pos >= 0 && nDualDeg > 0 && (set->lp_lexdualmaxrounds == -1 || rounds < set->lp_lexdualmaxrounds) );
11169 /* resolve to update solvers internal data structures - should only produce few pivots - is this needed? */
11174 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11238 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11261 /** calls LPI to perform barrier, measures time and counts iterations, gets basis feasibility status */
11268 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11282 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with barrier%s (diving=%d, nbarrierlps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11283 stat->lpcount+1, lp->ncols, lp->nrows, crossover ? "/crossover" : "", lp->diving || lp->probing,
11292 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
11294 SCIPsetDebugMsg(set, "wrote LP to file <%s> (barrier, objlim=%.15g, feastol=%.15g/%.15g, convtol=%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
11321 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") barrier solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11392 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with barrier%s (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", nbarrierlps=%" SCIP_LONGINT_FORMAT ")\n",
11393 stat->lpcount, crossover ? "/crossover" : "", lp->diving || lp->probing, stat->nbarrierlps, stat->ndivinglps);
11406 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11435 SCIPsetDebugMsg(set, "calling LP algorithm <%s> with a time limit of %g seconds\n", lpalgoName(lpalgo), lptimelimit);
11446 if( set->lp_lexdualalgo && (!set->lp_lexdualrootonly || stat->maxdepth == 0) && (!set->lp_lexdualstalling || lp->installing) )
11474 SCIPsetDebugMsg(set, "LP feasibility: primalfeasible=%u, dualfeasible=%u\n", lp->primalfeasible, lp->dualfeasible);
11480 /** maximal number of verblevel-high messages about numerical trouble in LP that will be printed
11481 * when this number is reached and display/verblevel is not full, then further messages are suppressed in this run
11511 /* if already max number of messages about numerical trouble in LP on verblevel at most high, then skip message */
11535 if( set->disp_verblevel < SCIP_VERBLEVEL_FULL && verblevel <= SCIP_VERBLEVEL_HIGH && stat->nnumtroublelpmsgs > MAXNUMTROUBLELPMSGS )
11537 SCIPmessagePrintInfo(messagehdlr, " -- further messages will be suppressed (use display/verblevel=5 to see all)");
11561 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "ignoring instability of %s", lpalgoName(lpalgo));
11581 int itlim, /**< maximal number of LP iterations to perform in first LP calls (before solving from scratch), or -1 for no limit */
11582 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
11587 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
11588 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11609 /**@todo implement solving the LP when loose variables with infinite best bound are present; for this, we need to
11610 * solve with deactivated objective limit in order to determine whether we are (a) infeasible or (b) feasible
11611 * and hence unbounded; to handle case (b) we need to store an array of loose variables with best bound in
11616 SCIPerrorMessage("cannot solve LP when loose variable with infinite best bound is present\n");
11627 if( lp->lpihaspolishing && (set->lp_solutionpolishing == 2 || (set->lp_solutionpolishing == 1 && stat->nnodes == 1 && !lp->probing)
11628 || (set->lp_solutionpolishing == 3 && ((lp->probing && !lp->strongbranchprobing) || lp->diving))) )
11646 SCIP_CALL( lpSetObjlim(lp, set, prob, lp->cutoffbound - getFiniteLooseObjval(lp, set, prob), &success) );
11649 SCIP_CALL( lpSetFeastol(lp, tightprimfeastol ? FEASTOLTIGHTFAC * lp->feastol : lp->feastol, &success) );
11650 SCIP_CALL( lpSetDualfeastol(lp, tightdualfeastol ? FEASTOLTIGHTFAC * SCIPsetDualfeastol(set) : SCIPsetDualfeastol(set),
11652 SCIP_CALL( lpSetBarrierconvtol(lp, (tightprimfeastol || tightdualfeastol) ? FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set)
11665 SCIP_CALL( lpSetRandomseed(lp, (int) SCIPsetInitializeRandomSeed(set, (unsigned) set->random_randomseed), &success) );
11671 /* after the first solve, do not use starting basis, since otherwise the solver will probably think the basis is
11675 /* check for stability; iteration limit exceeded is also treated like instability if the iteration limit is soft */
11676 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11687 /* In the following, whenever the LP iteration limit is exceeded in an LP solving call, we leave out the
11688 * remaining resolving calls with changed settings and go directly to solving the LP from scratch.
11691 /* if FASTMIP is turned on, solve again without FASTMIP (starts from the solution of the last LP solving call);
11699 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s without FASTMIP", lpalgoName(lpalgo));
11703 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11716 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11721 /* solve again with opposite scaling setting (starts from the solution of the last LP solving call) */
11725 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s scaling",
11730 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11747 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11751 /* solve again with opposite presolving setting (starts from the solution of the last LP solving call) */
11755 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s presolving",
11760 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11777 /* solve again with a tighter feasibility tolerance (starts from the solution of the last LP solving call);
11780 if( ((simplex && (!tightprimfeastol || !tightdualfeastol)) || (!tightprimfeastol && !tightdualfeastol)) &&
11798 SCIP_CALL( lpSetBarrierconvtol(lp, FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set), &success3) );
11804 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s with tighter primal and dual feasibility tolerance",
11809 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11836 /* all LPs solved after this point are solved from scratch, so set the LP iteration limit to the hard limit;
11846 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11866 lpalgo = (lpalgo == SCIP_LPALGO_PRIMALSIMPLEX ? SCIP_LPALGO_DUALSIMPLEX : SCIP_LPALGO_PRIMALSIMPLEX);
11867 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11886 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s scaling",
11911 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s presolving",
11950 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s with tighter feasibility tolerance",
11998 if( SCIPsetIsInfinity(set, lp->lpobjval) && lp->lpobjval != SCIPsetInfinity(set) ) /*lint !e777*/
12007 else if( SCIPsetIsInfinity(set, -lp->lpobjval) && lp->lpobjval != -SCIPsetInfinity(set) ) /*lint !e777*/
12027 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12028 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12035 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12036 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12062 SCIP_CALL( lpSolveStable(lp, set, messagehdlr, stat, prob, lpalgo, itlim, harditlim, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch,
12071 SCIPsetDebugMsg(set, "unresolved error while solving LP with %s\n", lpalgoName(lp->lastlpalgo));
12088 assert(!(SCIPlpiIsOptimal(lp->lpi) && SCIPlpiIsObjlimExc(lp->lpi) && SCIPlpiIsPrimalInfeasible(lp->lpi) &&
12089 SCIPlpiExistsPrimalRay(lp->lpi) && SCIPlpiIsIterlimExc(lp->lpi) && SCIPlpiIsTimelimExc(lp->lpi)));
12102 /* the solver may return the optimal value, even if this is greater or equal than the upper bound */
12103 SCIPsetDebugMsg(set, "optimal solution %.15g exceeds objective limit %.15g\n", lp->lpobjval, lp->lpiobjlim);
12107 /* if we did not disable the cutoff bound in the LP solver, the LP solution status should be objective limit
12110 assert(lpCutoffDisabled(set, prob) || lp->lpsolstat == SCIP_LPSOLSTAT_OBJLIMIT || SCIPsetIsInfinity(set, lp->cutoffbound)
12128 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12129 if( needdualray && !SCIPlpiHasDualRay(lp->lpi) && !solveddual && lpalgo != SCIP_LPALGO_DUALSIMPLEX )
12140 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12141 if( needprimalray && !SCIPlpiIsPrimalUnbounded(lp->lpi) && !solvedprimal && lpalgo != SCIP_LPALGO_PRIMALSIMPLEX )
12155 /* The lpobjval might be infinite, e.g. if the LP solver was not able to produce a valid bound while reaching the
12156 iteration limit. In this case, we avoid the warning in adjustLPobjval() by setting the messagehdlr to NULL. */
12174 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12183 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12189 SCIPerrorMessage("(node %" SCIP_LONGINT_FORMAT ") error or unknown return status of %s in LP %" SCIP_LONGINT_FORMAT " (internal status: %d)\n",
12197 SCIPsetDebugMsg(set, "solving LP with %s returned solstat=%d (internal status: %d, primalfeasible=%u, dualfeasible=%u)\n",
12204 /** flushes the LP and solves it with the primal or dual simplex algorithm, depending on the current basis feasibility */
12214 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12215 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12221 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12222 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12235 fastmip = ((!lp->flushaddedcols && !lp->flushdeletedcols) ? fastmip : 0); /* turn off FASTMIP if columns were changed */
12248 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12249 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12254 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12255 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12261 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12262 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12267 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12268 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12273 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIER, resolveitlim, harditlim, needprimalray,
12274 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12279 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIERCROSSOVER, resolveitlim, harditlim, needprimalray,
12280 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12310 assert(SCIPsetIsInfinity(set, -col->lazylb) || SCIPsetIsFeasGE(set, col->primsol, col->lazylb));
12311 assert(SCIPsetIsInfinity(set, col->lazyub) || SCIPsetIsFeasLE(set, col->primsol, col->lazyub));
12318 /** marks all lazy columns to be changed; this is needed for reloading/removing bounds of these columns before and after
12338 SCIPsetDebugMsg(set, "mark all lazy columns as changed in order to reload bounds (diving=%u, applied=%u)\n",
12348 assert((!(lp->divinglazyapplied)) || (col->flushedlb == col->lb) || col->lbchanged); /*lint !e777*/
12362 assert((!(lp->divinglazyapplied)) || (col->flushedub == col->ub) || col->ubchanged); /*lint !e777*/
12374 /* update lp->divinglazyapplied flag: if we are in diving mode, we just applied the lazy bounds,
12393 /* set itlim to INT_MAX if it is -1 to reduce the number of cases to be regarded in the following */
12396 /* return resolveiterfac * average iteration number per call after root, but at least resolveitermin and at most the hard iteration limit */
12398 (set->lp_resolveiterfac * (stat->nlpiterations - stat->nrootlpiterations) / (SCIP_Real)(stat->nlps - stat->nrootlps))));
12417 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12441 SCIPsetDebugMsg(set, "solving LP: %d rows, %d cols, primalfeasible=%u, dualfeasible=%u, solved=%u, diving=%u, probing=%u, cutoffbnd=%g\n",
12442 lp->nrows, lp->ncols, lp->primalfeasible, lp->dualfeasible, lp->solved, lp->diving, lp->probing, lp->cutoffbound);
12449 /* compute the limit for the number of LP resolving iterations, if needed (i.e. if limitresolveiters == TRUE) */
12454 /* if there are lazy bounds, check whether the bounds should explicitly be put into the LP (diving was started)
12459 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
12470 /* if the time limit was reached in the last call and the LP did not change, lp->solved is set to TRUE, but we want
12473 if( !lp->solved || (lp->lpsolstat == SCIP_LPSOLSTAT_TIMELIMIT && stat->status != SCIP_STATUS_TIMELIMIT) )
12489 fastmip = ((lp->lpihasfastmip && !lp->flushaddedcols && !lp->flushdeletedcols && stat->nnodes > 1) ? set->lp_fastmip : 0);
12500 SCIP_CALL( lpFlushAndSolve(lp, blkmem, set, messagehdlr, stat, prob, eventqueue, resolveitlim, harditlim, needprimalray,
12502 SCIPsetDebugMsg(set, "lpFlushAndSolve() returned solstat %d (error=%u)\n", SCIPlpGetSolstat(lp), *lperror);
12559 SCIPsetDebugMsg(set, "removed obsoletes - resolve LP again: %d rows, %d cols\n", lp->nrows, lp->ncols);
12566 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12570 /* solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12572 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again without FASTMIP\n",
12579 /* solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12583 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again with tighter feasibility tolerance\n",
12591 /* solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12593 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again from scratch\n",
12607 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12613 if( !SCIPprobAllColsInLP(prob, set, lp) || set->lp_checkfarkas || set->misc_exactsolve || set->lp_alwaysgetduals )
12619 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12625 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12638 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12642 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12646 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again without FASTMIP\n",
12657 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter dual feasibility tolerance\n",
12664 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12668 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12675 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12678 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
12713 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12717 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12719 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again without FASTMIP\n",
12726 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12730 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again with tighter primal feasibility tolerance\n",
12737 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12739 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again from scratch\n",
12746 /* unbounded solution is infeasible (this can happen due to numerical problems) and nothing helped:
12749 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP unbounded");
12760 /* Some LP solvers, e.g. CPLEX With FASTMIP setting, do not apply the final pivot to reach the dual solution
12761 * exceeding the objective limit. In some cases like branch-and-price, however, we must make sure that a dual
12762 * feasible solution exists that exceeds the objective limit. Therefore, we have to continue solving it without
12763 * objective limit for at least one iteration. We first try to continue with FASTMIP for one additional simplex
12764 * iteration using the steepest edge pricing rule. If this does not fix the problem, we temporarily disable
12774 /* actually, SCIPsetIsGE(set, lp->lpobjval, lp->lpiuobjlim) should hold, but we are a bit less strict in
12781 /* do one additional simplex step if the computed dual solution doesn't exceed the objective limit */
12788 SCIPsetDebugMsg(set, "objval = %f < %f = lp->lpiobjlim, but status objlimit\n", objval, lp->lpiobjlim);
12790 /* we want to resolve from the current basis (also if the LP had to be solved from scratch) */
12803 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12824 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12829 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12837 SCIPsetDebugMsg(set, " ---> new objval = %f (solstat: %d, without fastmip)\n", objval, solstat);
12844 SCIPsetDebugMsg(set, "unresolved error while resolving LP in order to exceed the objlimit\n");
12887 /* in debug mode, check that lazy bounds (if present) are not violated by an optimal LP solution */
12903 /* LP solution is not feasible or objective limit was reached without the LP value really exceeding
12917 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12931 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12937 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12949 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12957 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter primal feasibility tolerance\n",
12964 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12968 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12975 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12978 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
13018 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, unbounded LP");
13048 SCIPmessagePrintWarning(messagehdlr, "LP solver reached time limit, but SCIP time limit is not exceeded yet; "
13069 /* if the LP had to be solved from scratch, we have to reset this flag since it is stored in the LPI; otherwise it
13075 SCIPsetDebugMsg(set, "resetting parameter SCIP_LPPARAM_FROMSCRATCH to FALSE %s\n", success ? "" : "failed");
13095 * @note This method returns the objective value of the current LP solution, which might be primal or dual infeasible
13096 * if a limit was hit during solving. It must not be used as a dual bound if the LP solution status is
13247 /** gets the global pseudo objective value; that is all variables set to their best (w.r.t. the objective function)
13268 /* if the global pseudo objective value is smaller than -infinity, we just return -infinity */
13279 /** gets the pseudo objective value for the current search node; that is all variables set to their best (w.r.t. the
13311 /** gets pseudo objective value, if a bound of the given variable would be modified in the given way */
13349 /** gets pseudo objective value, if a bound of the given variable would be modified in the given way;
13553 assert(SCIPsetIsPositive(set, obj)); /* we only need to update if the objective is positive */
13594 assert(SCIPsetIsNegative(set, obj)); /* we only need to update if the objective is negative */
13621 /** updates current pseudo and loose objective values for a change in a variable's objective value or bounds */
13656 /* after changing a local bound on a LOOSE variable, we have to update the loose objective value, too */
13701 /** updates current pseudo and loose objective values for a change in a variable's objective value or bounds;
13735 if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_LOOSE && SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN )
13756 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldlb * oldobj; */
13768 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldub * oldobj; */
13782 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newlb * newobj; */
13794 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newub * newobj; */
13817 /** updates current pseudo and loose objective value for a change in a variable's objective coefficient */
13833 SCIP_CALL( lpUpdateVarProved(lp, set, var, oldobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
13844 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13847 /* the objective coefficient can only be changed during presolving, that implies that the global and local
13854 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), &deltaval, &deltainf);
13860 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var), &deltaval, &deltainf);
13871 /** updates current root pseudo objective value for a global change in a variable's lower bound */
13898 /** updates current pseudo and loose objective value for a change in a variable's lower bound */
13925 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13939 /** updates current root pseudo objective value for a global change in a variable's upper bound */
13993 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14015 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14036 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14134 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= lb * obj; */
14147 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= ub * obj; */
14152 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14265 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += lb * obj; */
14278 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += ub * obj; */
14319 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14332 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14333 SCIP_Bool* dualfeasible /**< pointer to store whether the solution is dual feasible, or NULL */
14363 /* initialize return and feasibility flags; if primal oder dual feasibility shall not be checked, we set the
14432 (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGE(set, lp, lpicols[c]->primsol, lpicols[c]->lb))
14433 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLE(set, lp, lpicols[c]->primsol, lpicols[c]->ub));
14440 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14441 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinty() for unbounded
14455 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14456 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14460 !SCIPsetIsDualfeasPositive(set, MIN((lpicols[c]->primsol - lpicols[c]->lb), 1.0) * lpicols[c]->redcost),
14461 !SCIPsetIsDualfeasNegative(set, MIN((lpicols[c]->ub - lpicols[c]->primsol), 1.0) * lpicols[c]->redcost),
14472 /* complementary slackness means that if a variable is not at its lower or upper bound, its reduced costs
14473 * must be non-positive or non-negative, respectively; in particular, if a variable is strictly within its
14477 && (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb)) )
14480 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub)) )
14483 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14484 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14488 !SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb) || !SCIPsetIsDualfeasPositive(set, lpicols[c]->redcost),
14489 !SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub) || !SCIPsetIsDualfeasNegative(set, lpicols[c]->redcost),
14493 /* we intentionally use an exact positive/negative check because ignoring small reduced cost values may lead to a
14494 * wrong bound value; if the corresponding bound is +/-infinity, we use zero reduced cost (if stilldualfeasible is
14523 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGE(set, lp, lpirows[r]->activity, lpirows[r]->lhs))
14524 && (SCIPsetIsInfinity(set, lpirows[r]->rhs) || SCIPlpIsFeasLE(set, lp, lpirows[r]->activity, lpirows[r]->rhs));
14530 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14531 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinity() for unbounded
14545 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g]: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14546 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->activity, lpirows[r]->dualsol,
14550 !SCIPsetIsDualfeasPositive(set, MIN((lpirows[r]->activity - lpirows[r]->lhs), 1.0) * lpirows[r]->dualsol),
14551 !SCIPsetIsDualfeasNegative(set, MIN((lpirows[r]->rhs - lpirows[r]->activity), 1.0) * lpirows[r]->dualsol),
14556 /* complementary slackness means that if the activity of a row is not at its left-hand or right-hand side,
14557 * its dual multiplier must be non-positive or non-negative, respectively; in particular, if the activity is
14561 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs)) )
14564 (SCIPsetIsInfinity(set,lpirows[r]->rhs) || SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs)) )
14567 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g] + %.9g: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14568 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, lpirows[r]->activity, lpirows[r]->dualsol,
14572 !SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs) || !SCIPsetIsDualfeasPositive(set, lpirows[r]->dualsol),
14573 !SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs) || !SCIPsetIsDualfeasNegative(set, lpirows[r]->dualsol),
14577 /* we intentionally use an exact positive/negative check because ignoring small dual multipliers may lead to a
14578 * wrong bound value; if the corresponding side is +/-infinity, we use a zero dual multiplier (if
14579 * stilldualfeasible is TRUE, we are in the case that the dual multiplier is tiny with wrong sign)
14590 /* if the objective value returned by the LP solver is smaller than the internally computed primal bound, then we
14591 * declare the solution primal infeasible; we assume primalbound and lp->lpobjval to be equal if they are both +/-
14594 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14595 if( stillprimalfeasible && !(SCIPsetIsInfinity(set, primalbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14599 SCIPsetDebugMsg(set, " primalbound=%.9f, lpbound=%.9g, pfeas=%u(%u)\n", primalbound, lp->lpobjval,
14600 SCIPsetIsFeasLE(set, primalbound, lp->lpobjval), primalfeasible != NULL ? stillprimalfeasible : TRUE);
14603 /* if the objective value returned by the LP solver is smaller than the internally computed dual bound, we declare
14604 * the solution dual infeasible; we assume dualbound and lp->lpobjval to be equal if they are both +/- infinity
14606 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14607 if( stilldualfeasible && !(SCIPsetIsInfinity(set, dualbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14611 SCIPsetDebugMsg(set, " dualbound=%.9f, lpbound=%.9g, dfeas=%u(%u)\n", dualbound, lp->lpobjval,
14612 SCIPsetIsFeasGE(set, dualbound, lp->lpobjval), dualfeasible != NULL ? stilldualfeasible : TRUE);
14638 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14639 SCIP_Bool* rayfeasible /**< pointer to store whether the primal ray is a feasible unboundedness proof, or NULL */
14682 SCIPsetDebugMsg(set, "getting new unbounded LP solution %" SCIP_LONGINT_FORMAT "\n", stat->lpcount);
14698 /* calculate the objective value decrease of the ray and heuristically try to construct primal solution */
14707 /* there should only be a nonzero value in the ray if there is no finite bound in this direction */
14718 /* Many LP solvers cannot directly provide a feasible solution if they detected unboundedness. We therefore first
14735 assert( SCIPlpIsFeasGE(set, lp, primsol[c], col->lb) && SCIPlpIsFeasLE(set, lp, primsol[c], col->ub) );
14792 /* check whether primal solution satisfies the bounds; note that we also ensure that the primal
14793 * solution is within SCIP's infinity bounds; otherwise the rayscale below is not well-defined */
14794 if( SCIPsetIsInfinity(set, REALABS(primsol[c])) || SCIPlpIsFeasLT(set, lp, primsol[c], lpicols[c]->lb) ||
14921 SCIPsetDebugMsg(set, "unbounded LP solution: rayobjval=%f, rayscale=%f\n", rayobjval, rayscale);
14924 /* Note: We do not check the feasibility of the unbounded solution, because it will likely be infeasible due to the
14934 lpicols[c]->primsol = MAX(-SCIPsetInfinity(set), MIN(SCIPsetInfinity(set), primsolval)); /*lint !e666*/
14960 SCIP_Real* ray /**< array for storing primal ray values, they are stored w.r.t. the problem index of the variables,
15013 /** stores the dual Farkas multipliers for infeasibility proof in rows. besides, the proof is checked for validity if
15096 if( (SCIPsetIsDualfeasGT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, -lpirows[r]->lhs))
15097 || (SCIPsetIsDualfeasLT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, lpirows[r]->rhs)) )
15099 SCIPsetDebugMsg(set, "farkas proof is invalid: row <%s>[lhs=%g,rhs=%g,c=%g] has multiplier %g\n",
15100 SCIProwGetName(lpirows[r]), lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, dualfarkas[r]);
15108 /* dual multipliers, for which the corresponding row side in infinite, are treated as zero if they are zero
15171 * due to numerics, it might happen that the left-hand side of the aggregation is larger/smaller or equal than +/- infinity.
15174 if( checkfarkas && (SCIPsetIsInfinity(set, REALABS(farkaslhs)) || SCIPsetIsGE(set, maxactivity, farkaslhs)) )
15176 SCIPsetDebugMsg(set, "farkas proof is invalid: maxactivity=%.12f, lhs=%.12f\n", maxactivity, farkaslhs);
15205 /** increases age of columns with solution value 0.0 and basic rows with activity not at its bounds,
15260 /*debugMsg(scip, " -> row <%s>: activity=%f, age=%d\n", lpirows[r]->name, lpirows[r]->activity, lpirows[r]->age);*/
15302 /* mark column to be deleted from the LPI, update column arrays of all linked rows, and update the objective
15417 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
15510 && cols[c]->obsoletenode != stat->nnodes /* don't remove column a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15513 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15589 && rows[r]->obsoletenode != stat->nnodes /* don't remove row a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15616 /** removes all non-basic columns and basic rows in the part of the LP created at the current node, that are too old */
15632 SCIPsetDebugMsg(set, "removing obsolete columns starting with %d/%d, obsolete rows starting with %d/%d\n",
15641 SCIP_CALL( lpRemoveObsoleteRows(lp, blkmem, set, stat, eventqueue, eventfilter, lp->firstnewrow) );
15722 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15816 /** removes all non-basic columns at 0.0 and basic rows in the part of the LP created at the current node */
15840 SCIPsetDebugMsg(set, "removing unused columns starting with %d/%d (%u), unused rows starting with %d/%d (%u), LP algo: %d, basic sol: %u\n",
15841 lp->firstnewcol, lp->ncols, cleanupcols, lp->firstnewrow, lp->nrows, cleanuprows, lp->lastlpalgo, lp->solisbasic);
15879 SCIPsetDebugMsg(set, "removing all unused columns (%u) and rows (%u), LP algo: %d, basic sol: %u\n",
16054 SCIP_CALL( rowStoreSolVals(lp->rows[r], blkmem, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16074 /** quits LP diving and resets bounds and objective values of columns to the current node's values */
16096 SCIPsetDebugMsg(set, "diving ended (LP flushed: %u, solstat: %d)\n", lp->flushed, SCIPlpGetSolstat(lp));
16139 /* reload LPI state saved at start of diving and free it afterwards; it may be NULL, in which case simply nothing
16143 lp->divelpwasprimfeas, lp->divelpwasprimchecked, lp->divelpwasdualfeas, lp->divelpwasdualchecked) );
16155 /* if the LP was solved before starting the dive, but not to optimality (or unboundedness), then we need to solve the
16156 * LP again to reset the solution (e.g. we do not save the Farkas proof for infeasible LPs, because we assume that we
16157 * are not called in this case, anyway); restoring by solving the LP again in either case can be forced by setting
16159 * restoring an unbounded ray after solve does not seem to work currently (bug 631), so we resolve also in this case
16163 && (set->lp_resolverestore || lp->storedsolvals->lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || lp->divenolddomchgs < stat->domchgcount) )
16167 SCIP_CALL( SCIPlpSolveAndEval(lp, set, messagehdlr, blkmem, stat, eventqueue, eventfilter, prob, -1LL, FALSE, FALSE, FALSE, &lperror) );
16170 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved when resolving LP after diving");
16183 /* otherwise, we can just reload the buffered LP solution values at start of diving; this has the advantage that we
16184 * are guaranteed to continue with the same LP status as before diving, while in numerically difficult cases, a
16195 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
16205 /* increment lp counter to ensure that we do not use solution values from the last solved diving lp */
16222 SCIP_CALL( colRestoreSolVals(lp->cols[c], blkmem, stat->lpcount, set->lp_freesolvalbuffers) );
16226 SCIP_CALL( rowRestoreSolVals(lp->rows[r], blkmem, stat->lpcount, set->lp_freesolvalbuffers, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16338 * Calculating this value in interval arithmetics gives a proved lower LP bound for the following reason (assuming,
16350 SCIP_Bool usefarkas, /**< use y = dual Farkas and c = 0 instead of y = dual solution and c = obj? */
16485 SCIPsetDebugMsg(set, "proved Farkas value of LP: %g -> infeasibility %sproved\n", bound, *proved ? "" : "not ");
16513 SCIP_Bool genericnames, /**< should generic names like x_i and row_j be used in order to avoid
16543 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Original Variable and Constraint Names have been replaced by generic names.\n");
16546 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Warning: Variable and Constraint Names should not contain special characters like '+', '=' etc.\n");
16547 SCIPmessageFPrintInfo(messagehdlr, file, "\\ If this is the case, the model may be corrupted!\n");
16552 SCIPmessageFPrintInfo(messagehdlr, file, "\\ An artificial variable 'objoffset' has been added and fixed to 1.\n");
16553 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Switching this variable to 0 will disable the offset in the objective.\n\n");
16589 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g objoffset", objoffset * (SCIP_Real) objsense * objscale);
16601 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16602 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16603 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16605 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16607 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16609 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16611 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16630 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16631 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16632 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n", lp->rows[i]->name);
16648 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16650 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16660 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16664 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16668 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16671 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16692 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16693 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16694 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16696 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16698 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16700 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16702 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16721 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16722 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16723 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n",lp->rows[i]->name);
16739 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16741 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16751 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16755 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16759 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16762 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16994 /** gets the basis status of a column in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
16995 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_ZERO for columns not in the current SCIP_LP
17037 /** returns whether the associated variable is of integral type (binary, integer, implicit integer) */
17101 /** get number of nonzero entries in column vector, that correspond to rows currently in the SCIP_LP;
17103 * @warning This method is only applicable on columns, that are completely linked to their rows (e.g. a column
17104 * that is in the current LP and the LP was solved, or a column that was in a solved LP and didn't change afterwards
17136 /** gets node number of the last node in current branch and bound run, where strong branching was used on the
17158 /** gets the age of a column, i.e., the total number of successive times a column was in the LP and was 0.0 in the solution */
17188 /** get number of nonzero entries in row vector, that correspond to columns currently in the SCIP_LP;
17190 * @warning This method is only applicable on rows, that are completely linked to their columns (e.g. a row
17191 * that is in the current LP and the LP was solved, or a row that was in a solved LP and didn't change afterwards
17303 /** gets the basis status of a row in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
17304 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_BASIC for rows not in the current SCIP_LP
17356 /** returns TRUE iff the activity of the row (without the row's constant) is always integral in a feasible solution */
17376 /** returns TRUE iff row is modifiable during node processing (subject to column generation) */
17641 /** recalculates Euclidean norm of objective function vector of column variables if it have gotten unreliable during calculation */
17663 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
17671 /** gets Euclidean norm of objective function vector of column variables, only use this method if
17672 * lp->objsqrnormunreliable == FALSE, so probably you have to call SCIPlpRecalculateObjSqrNorm before */
17684 /** sets whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17695 /** returns whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17705 /** gets the objective value of the root node LP; returns SCIP_INVALID if the root node LP was not (yet) solved */
17715 /** gets part of the objective value of the root node LP that results from COLUMN variables only;
17727 /** gets part of the objective value of the root node LP that results from LOOSE variables only;
17749 /** sets whether the current LP is a relaxation of the current problem and its optimal objective value is a local lower bound */
17760 /** returns whether the current LP is a relaxation of the problem for which it has been solved and its
17822 /** returns whether the LP is in diving mode and the objective value of at least one column was changed */
17854 /* returns TRUE if at least one left/right hand side of an LP row was changed during diving mode */
17878 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
17911 SCIPmessagePrintWarning(messagehdlr, "Could not set feasibility tolerance of LP solver for relative interior point computation.\n");
17919 SCIPmessagePrintWarning(messagehdlr, "Could not set dual feasibility tolerance of LP solver for relative interior point computation.\n");
17932 /* note: if the variable is fixed we cannot simply fix the variables (because alpha scales the problem) */
18359 SCIP_CALL( SCIPlpiAddRows(lpi, ntotrows, matlhs, matrhs, NULL, matidx, matbeg, matinds, matvals) );
18386 SCIPmessagePrintWarning(messagehdlr, "Could not set time limit of LP solver for relative interior point computation.\n");
18395 SCIPmessagePrintWarning(messagehdlr, "Could not set iteration limit of LP solver for relative interior point computation.\n");
18405 SCIPmessagePrintWarning(messagehdlr, "Iteration limit exceeded in relative interior point computation.\n");
18407 SCIPmessagePrintWarning(messagehdlr, "Time limit exceeded in relative interior point computation.\n");
18512 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasGT(set, val, col->lb) );
18518 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasLT(set, val, col->ub) );
18538 * "Identifying the Set of Always-Active Constraints in a System of Linear Inequalities by a Single Linear Program"@par
18565 * If the original LP is feasible, this LP is feasible as well. Any optimal solution yields the relative interior point
18566 * \f$x^*_j/\alpha^*\f$. Note that this will just produce some relative interior point. It does not produce a
18567 * particular relative interior point, e.g., one that maximizes the distance to the boundary in some norm.
18579 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
18603 if( inclobjcutoff && (SCIPsetIsInfinity(set, lp->cutoffbound) || lp->looseobjvalinf > 0 || lp->looseobjval == SCIP_INVALID) ) /*lint !e777 */
18622 retcode = computeRelIntPoint(lpi, set, messagehdlr, lp, prob, relaxrows, inclobjcutoff, timelimit, iterlimit, point, success);
18635 /** computes two measures for dual degeneracy (dual degeneracy rate and variable-constraint ratio)
18639 * and the variable-constraint ratio, i.e., the number of unfixed variables in relation to the basis size
18697 /* count number of rows that will be turned into equations when reducing the LP to the optimal face */
18737 assert(nfixedcols + nfixedrows <= ncols + nineq + nbasicequalities - nrows - nalreadyfixedcols - nimplicitfixedrows);
18740 lp->degeneracy = 1.0 - 1.0 * (nfixedcols + nfixedrows) / (ncols + nineq - nrows + nbasicequalities - nalreadyfixedcols);
18745 lp->varconsratio = 1.0 * (ncols + nineq + nbasicequalities - nfixedcols - nfixedrows - nalreadyfixedcols) / nrows;
static SCIP_RETCODE lpRestoreSolVals(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_Longint validlp)
Definition: lp.c:401
SCIP_Bool SCIPsetIsUpdateUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: set.c:7323
Definition: type_lp.h:65
SCIP_RETCODE SCIPeventfilterCreate(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem)
Definition: event.c:1812
SCIP_Longint ndualresolvelpiterations
Definition: struct_stat.h:61
static SCIP_RETCODE computeRelIntPoint(SCIP_LPI *lpi, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:17867
void SCIPcolMarkNotRemovableLocal(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4746
SCIP_RETCODE SCIPlpGetProvedLowerbound(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *bound)
Definition: lp.c:16457
SCIP_Real SCIProwGetSolFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6503
void SCIPcolGetStrongbranchLast(SCIP_COL *col, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Real *solval, SCIP_Real *lpobjval)
Definition: lp.c:4702
SCIP_RETCODE SCIPlpiGetBInvCol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3262
SCIP_Bool SCIPsolveIsStopped(SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool checknodelimits)
Definition: solve.c:93
static SCIP_RETCODE lpStoreSolVals(SCIP_LP *lp, SCIP_STAT *stat, BMS_BLKMEM *blkmem)
Definition: lp.c:367
SCIP_Bool SCIPsetIsSumGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6509
static SCIP_RETCODE lpSetBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value, SCIP_Bool *success)
Definition: lp.c:2536
static SCIP_RETCODE lpSetFastmip(SCIP_LP *lp, int fastmip, SCIP_Bool *success)
Definition: lp.c:2855
SCIP_RETCODE SCIPcolGetStrongbranch(SCIP_COL *col, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Bool updatecol, SCIP_Bool updatestat, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4294
#define BMSfreeBlockMemoryArrayNull(mem, ptr, num)
Definition: memory.h:461
static SCIP_RETCODE lpSetDualfeastol(SCIP_LP *lp, SCIP_Real dualfeastol, SCIP_Bool *success)
Definition: lp.c:2743
static SCIP_RETCODE lpUpdateVarProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real oldlb, SCIP_Real oldub, SCIP_Real newobj, SCIP_Real newlb, SCIP_Real newub)
Definition: lp.c:13705
SCIP_RETCODE SCIPeventCreateRowAddedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:885
internal methods for managing events
SCIP_RETCODE SCIPlpFreeNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10172
static SCIP_RETCODE lpSetFromscratch(SCIP_LP *lp, SCIP_Bool fromscratch, SCIP_Bool *success)
Definition: lp.c:2830
static int SCIProwGetDiscreteScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7360
SCIP_Bool SCIPsetIsLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6264
internal methods for storing primal CIP solutions
static SCIP_RETCODE lpSetRowrepswitch(SCIP_LP *lp, SCIP_Real rowrepswitch, SCIP_Bool *success)
Definition: lp.c:2961
SCIP_Real SCIProwGetScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7003
Definition: type_lpi.h:58
static SCIP_RETCODE rowScale(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real scaleval, SCIP_Bool integralcontvars, SCIP_Real minrounddelta, SCIP_Real maxrounddelta)
Definition: lp.c:4935
SCIP_RETCODE SCIPlpUpdateAddVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14008
Definition: intervalarith.h:44
SCIP_RETCODE SCIPlpiSetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3415
static SCIP_RETCODE colChgCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:1855
SCIP_RETCODE SCIPlpShrinkRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int newnrows)
Definition: lp.c:9700
Definition: type_lp.h:39
static SCIP_RETCODE colUnlink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2388
static SCIP_Bool isNewValueUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: lp.c:3639
Definition: type_lpi.h:60
SCIP_RETCODE SCIPlpiSetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPINORMS *lpinorms)
Definition: lpi_clp.cpp:3596
unsigned int SCIPsetInitializeRandomSeed(SCIP_SET *set, unsigned int initialseedvalue)
Definition: set.c:7400
static SCIP_RETCODE lpCleanupCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15679
SCIP_RETCODE SCIPlpComputeRelIntPoint(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:18569
static SCIP_Real getFiniteLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:896
static SCIP_RETCODE lpSetConditionLimit(SCIP_LP *lp, SCIP_Real condlimit, SCIP_Bool *success)
Definition: lp.c:3110
SCIP_RETCODE SCIPeventCreateRowDeletedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:904
SCIP_RETCODE SCIPlpiGetDualfarkas(SCIP_LPI *lpi, SCIP_Real *dualfarkas)
Definition: lpi_clp.cpp:2843
static SCIP_RETCODE ensureLpirowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:228
SCIP_RETCODE SCIPlpGetBInvCol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9867
SCIP_Real SCIProwGetRelaxFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6269
SCIP_RETCODE SCIPcolChgCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3508
SCIP_Bool SCIPsetIsFeasEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6604
SCIP_RETCODE SCIPlpiStartStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:1992
SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost)
Definition: lpi_clp.cpp:2774
static SCIP_RETCODE rowStoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Bool infeasible)
Definition: lp.c:535
SCIP_RETCODE SCIPlpRemoveAllObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15648
SCIP_Real SCIProwGetPseudoActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6417
void SCIPlpSetRootLPIsRelax(SCIP_LP *lp, SCIP_Bool isrelax)
Definition: lp.c:17685
SCIP_RETCODE SCIPeventqueueAdd(SCIP_EVENTQUEUE *eventqueue, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PRIMAL *primal, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter, SCIP_EVENT **event)
Definition: event.c:2231
SCIP_Bool SCIProwIsRedundant(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6635
SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival)
Definition: lpi_clp.cpp:3678
static SCIP_RETCODE lpFlushAddCols(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8000
void SCIProwRecalcLPActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6167
void SCIPlpRecalculateObjSqrNorm(SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:17642
internal methods for clocks and timing issues
static void getObjvalDeltaUb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldub, SCIP_Real newub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13582
SCIP_Longint SCIPcolGetStrongbranchNode(SCIP_COL *col)
Definition: lp.c:17139
SCIP_RETCODE SCIPlpiGetBase(SCIP_LPI *lpi, int *cstat, int *rstat)
Definition: lpi_clp.cpp:2953
SCIP_RETCODE SCIPeventfilterDel(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: event.c:1970
Definition: type_lpi.h:41
SCIP_RETCODE SCIProwChgConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real constant)
Definition: lp.c:5580
static SCIP_RETCODE lpDelColset(SCIP_LP *lp, SCIP_SET *set, int *coldstat)
Definition: lp.c:15268
SCIP_RETCODE SCIPlpGetIterations(SCIP_LP *lp, int *iterations)
Definition: lp.c:15193
SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs)
Definition: lpi_clp.cpp:1158
static void adjustLPobjval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr)
Definition: lp.c:11989
Definition: struct_var.h:198
SCIP_RETCODE SCIPlpiGetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int *ival)
Definition: lpi_clp.cpp:3634
interface methods for specific LP solvers
void SCIPintervalSub(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:785
SCIP_RETCODE SCIPlpiGetIterations(SCIP_LPI *lpi, int *iterations)
Definition: lpi_clp.cpp:2907
SCIP_RETCODE SCIPcolChgObj(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newobj)
Definition: lp.c:3693
SCIP_Real SCIPlpGetGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13250
SCIP_RETCODE SCIPlpGetDualfarkas(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *valid)
Definition: lp.c:15018
SCIP_RETCODE SCIPlpUpdateVarLb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13899
static SCIP_RETCODE lpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14187
SCIP_RETCODE SCIProwEnsureSize(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:620
static void lpNumericalTroubleMessage(SCIP_MESSAGEHDLR *messagehdlr, SCIP_SET *set, SCIP_STAT *stat, SCIP_VERBLEVEL verblevel, const char *formatstr,...)
Definition: lp.c:11492
SCIP_RETCODE SCIPlpFreeState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10095
Definition: type_lpi.h:51
SCIP_RETCODE SCIPcolCreate(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var, int len, SCIP_ROW **rows, SCIP_Real *vals, SCIP_Bool removable)
Definition: lp.c:3274
Definition: type_message.h:45
Definition: type_lp.h:64
Definition: type_message.h:41
SCIP_RETCODE SCIPlpUpdateVarLbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13872
Definition: type_lpi.h:75
void SCIPsortIntPtrIntReal(int *intarray1, void **ptrarray, int *intarray2, SCIP_Real *realarray, int len)
static SCIP_RETCODE ensureLazycolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:294
SCIP_RETCODE SCIPlpUpdateVarUbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13940
datastructures for managing events
SCIP_Bool SCIPsetIsFeasIntegral(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6747
static void recomputeLooseObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:770
static SCIP_RETCODE insertColChgcols(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:3614
static SCIP_RETCODE colAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val, int linkpos)
Definition: lp.c:1689
Definition: struct_event.h:179
Definition: type_lp.h:74
Definition: struct_message.h:36
SCIP_RETCODE SCIPlpIsInfeasibilityProved(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool *proved)
Definition: lp.c:16471
static SCIP_RETCODE lpFlushAddRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8223
static SCIP_RETCODE lpSetBarrierconvtol(SCIP_LP *lp, SCIP_Real barrierconvtol, SCIP_Bool *success)
Definition: lp.c:2786
SCIP_Real SCIProwGetLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6803
SCIP_RETCODE SCIPlpGetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10028
SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval)
Definition: lpi_clp.cpp:3819
void SCIPlpStartStrongbranchProbing(SCIP_LP *lp)
Definition: lp.c:16311
static SCIP_RETCODE lpSetObjlim(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real objlim, SCIP_Bool *success)
Definition: lp.c:2648
static SCIP_RETCODE lpCheckIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value)
Definition: lp.c:2576
SCIP_RETCODE SCIProwChgCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5471
Definition: type_lpi.h:62
SCIP_RETCODE SCIPlpiGetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3578
SCIP_Bool SCIPlpIsFeasLE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18806
SCIP_RETCODE SCIPlpRemoveNewObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15617
Definition: struct_prob.h:39
public methods for problem variables
SCIP_Real SCIProwGetNLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6959
static void rowAddNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool updateidxvals)
Definition: lp.c:1899
SCIP_RETCODE SCIPlpEndDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_VAR **vars, int nvars)
Definition: lp.c:16075
SCIP_RETCODE SCIProwMakeIntegral(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Bool *success)
Definition: lp.c:5976
static SCIP_RETCODE lpSetPresolving(SCIP_LP *lp, SCIP_Bool presolving, SCIP_Bool *success)
Definition: lp.c:2936
void SCIPintervalSet(SCIP_INTERVAL *resultant, SCIP_Real value)
Definition: intervalarith.c:409
Definition: type_lpi.h:50
SCIP_RETCODE SCIPlpSolveAndEval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, BMS_BLKMEM *blkmem, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_Longint itlim, SCIP_Bool limitresolveiters, SCIP_Bool aging, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12404
Definition: struct_lp.h:107
static SCIP_RETCODE updateLazyBounds(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:12322
Definition: type_lp.h:55
static void lpUpdateObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real deltaval, int deltainf, SCIP_Bool local, SCIP_Bool loose, SCIP_Bool global)
Definition: lp.c:13623
SCIP_Real SCIPlpGetPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13282
SCIP_Real SCIProwGetLPSolCutoffDistance(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_LP *lp)
Definition: lp.c:6746
SCIP_RETCODE SCIPlpiGetBounds(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: lpi_clp.cpp:1700
SCIP_RETCODE SCIPcolIncCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real incval)
Definition: lp.c:3559
SCIP_RETCODE SCIPlpCleanupAll(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15856
SCIP_RETCODE SCIPcolDelCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row)
Definition: lp.c:3463
void SCIPintervalAdd(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:678
static SCIP_RETCODE colStoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem)
Definition: lp.c:461
SCIP_RETCODE SCIPlpSetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS *lpinorms)
Definition: lp.c:10152
Definition: struct_sepa.h:37
static SCIP_RETCODE lpSetPricing(SCIP_LP *lp, SCIP_PRICING pricing)
Definition: lp.c:3022
static SCIP_RETCODE ensureChgcolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:159
Definition: type_message.h:46
SCIP_RETCODE SCIPlpiSetIntegralityInformation(SCIP_LPI *lpi, int ncols, int *intInfo)
Definition: lpi_clp.cpp:471
static SCIP_RETCODE lpSetRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value, SCIP_Bool *success)
Definition: lp.c:2548
static SCIP_RETCODE reallocDiveChgSideArrays(SCIP_LP *lp, int minsize, SCIP_Real growfact)
Definition: lp.c:9027
Definition: type_lp.h:37
SCIP_RETCODE SCIProwIncCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real incval)
Definition: lp.c:5523
Definition: type_lp.h:66
static SCIP_RETCODE ensureSoldirectionSize(SCIP_LP *lp, int num)
Definition: lp.c:274
SCIP_Longint SCIPcolGetStrongbranchLPAge(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4734
internal methods for LP management
SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen)
Definition: lpi_clp.cpp:522
static SCIP_RETCODE lpUpdateVarColumnProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14100
Definition: heur_padm.c:123
static void recomputeGlbPseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:854
SCIP_RETCODE SCIPlpiGetBInvARow(SCIP_LPI *lpi, int r, const SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3300
SCIP_RETCODE SCIPlpRecordOldRowSideDive(SCIP_LP *lp, SCIP_ROW *row, SCIP_SIDETYPE sidetype)
Definition: lp.c:16257
SCIP_RETCODE SCIPlpiAddCols(SCIP_LPI *lpi, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:749
SCIP_Real SCIPsolGetVal(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var)
Definition: sol.c:1338
SCIP_Bool SCIPlpiIsPrimalUnbounded(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2474
Definition: struct_lp.h:126
Definition: lpi_cpx.c:188
static SCIP_RETCODE lpSolveStable(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int itlim, int harditlim, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, SCIP_Bool keepsol, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11574
SCIP_Bool SCIPsetIsGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6300
Definition: struct_sol.h:64
Definition: struct_set.h:63
Definition: type_lpi.h:52
SCIP_Bool SCIPsetIsEfficacious(SCIP_SET *set, SCIP_Bool root, SCIP_Real efficacy)
Definition: set.c:7068
Definition: type_lpi.h:73
static SCIP_RETCODE colLink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2344
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9295
SCIP_RETCODE SCIPrealarrayIncVal(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int idx, SCIP_Real incval)
Definition: misc.c:4304
Definition: type_lp.h:75
static void rowDelNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool forcenormupdate, SCIP_Bool updateindex, SCIP_Bool updateval)
Definition: lp.c:1976
SCIP_Bool SCIPlpIsFeasEQ(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18766
SCIP_Real SCIPcolCalcRedcost(SCIP_COL *col, SCIP_Real *dualsol)
Definition: lp.c:3842
SCIP_Bool SCIPsetIsLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6246
SCIP_RETCODE SCIPlpCleanupNew(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15817
SCIP_Bool SCIPsetIsSumLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6473
SCIP_RETCODE SCIPlpiAddRows(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:905
Definition: struct_lp.h:96
SCIP_RETCODE SCIProwCatchEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: lp.c:7828
Definition: type_lp.h:40
SCIP_RETCODE SCIPlpiWriteLP(SCIP_LPI *lpi, const char *fname)
Definition: lpi_clp.cpp:3987
SCIP_RETCODE SCIPcolAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3442
SCIP_RETCODE SCIPlpUpdateVarUb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13967
#define BMSduplicateBlockMemoryArray(mem, ptr, source, num)
Definition: memory.h:455
static SCIP_RETCODE rowUnlink(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:2470
static SCIP_RETCODE lpUpdateVarLooseProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14232
static SCIP_RETCODE colRestoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer)
Definition: lp.c:488
Definition: struct_misc.h:148
SCIP_RETCODE SCIPlpStartDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:15969
SCIP_RETCODE SCIProwChgLhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real lhs)
Definition: lp.c:5661
SCIP_RETCODE SCIPlpFlush(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8666
static SCIP_RETCODE lpFlushDelRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: lp.c:8174
SCIP_RETCODE SCIPeventfilterAdd(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: event.c:1877
SCIP_RETCODE SCIPlpWriteMip(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *fname, SCIP_Bool genericnames, SCIP_Bool origobj, SCIP_OBJSENSE objsense, SCIP_Real objscale, SCIP_Real objoffset, SCIP_Bool lazyconss)
Definition: lp.c:16508
SCIP_BOUNDTYPE SCIPboundtypeOpposite(SCIP_BOUNDTYPE boundtype)
Definition: lp.c:17169
internal methods for storing and manipulating the main problem
static SCIP_Bool isIntegralScalar(SCIP_Real val, SCIP_Real scalar, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Real *intval)
Definition: lp.c:4895
Definition: struct_cons.h:37
void SCIPmessagePrintVerbInfo(SCIP_MESSAGEHDLR *messagehdlr, SCIP_VERBLEVEL verblevel, SCIP_VERBLEVEL msgverblevel, const char *formatstr,...)
Definition: message.c:669
static SCIP_RETCODE lpSetSolutionPolishing(SCIP_LP *lp, SCIP_Bool polishing, SCIP_Bool *success)
Definition: lp.c:3224
interval arithmetics for provable bounds
void SCIPsortPtrRealInt(void **ptrarray, SCIP_Real *realarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
SCIP_RETCODE SCIPlpiGetBasisInd(SCIP_LPI *lpi, int *bind)
Definition: lpi_clp.cpp:3175
SCIP_RETCODE SCIPlpiStrongbranchesFrac(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2290
Definition: struct_cons.h:117
SCIP_RETCODE SCIPlpAddCol(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, int depth)
Definition: lp.c:9445
SCIP_RETCODE SCIPlpShrinkCols(SCIP_LP *lp, SCIP_SET *set, int newncols)
Definition: lp.c:9628
Definition: type_retcode.h:48
Definition: type_lp.h:77
Definition: type_lp.h:47
static SCIP_Real colCalcInternalFarkasCoef(SCIP_COL *col)
Definition: lp.c:4077
Definition: type_lpi.h:34
SCIP_RETCODE SCIPlpiFreeState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3489
static SCIP_RETCODE lpCleanupRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15746
static SCIP_RETCODE lpCopyIntegrality(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:8618
static SCIP_RETCODE pricing(SCIP *scip, SCIP_PRICER *pricer, SCIP_Real *lowerbound, SCIP_Bool farkas)
Definition: pricer_stp.c:176
SCIP_RETCODE SCIPlpSumRows(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real *weights, SCIP_REALARRAY *sumcoef, SCIP_Real *sumlhs, SCIP_Real *sumrhs)
Definition: lp.c:9942
SCIP_Bool SCIPlpiIsPrimalInfeasible(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2488
Definition: type_lpi.h:44
static SCIP_RETCODE rowAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val, int linkpos)
Definition: lp.c:2034
Definition: type_var.h:42
SCIP_RETCODE SCIPlpiStrongbranchFrac(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2269
void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:418
SCIP_Real SCIProwGetNLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6331
SCIP_RETCODE SCIPlpGetUnboundedSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *rayfeasible)
Definition: lp.c:14634
SCIP_Real SCIPintervalGetInf(SCIP_INTERVAL interval)
Definition: intervalarith.c:393
SCIP_RETCODE SCIPlpSetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, SCIP_LPISTATE *lpistate, SCIP_Bool wasprimfeas, SCIP_Bool wasprimchecked, SCIP_Bool wasdualfeas, SCIP_Bool wasdualchecked)
Definition: lp.c:10052
SCIP_Real SCIProwGetPseudoFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6445
SCIP_RETCODE SCIPlpAddRow(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_ROW *row, int depth)
Definition: lp.c:9504
internal miscellaneous methods
SCIP_Longint nprimalresolvelpiterations
Definition: struct_stat.h:60
SCIP_Bool SCIPsetIsDualfeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6881
SCIP_RETCODE SCIPlpiStrongbranchesInt(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2336
Definition: type_retcode.h:33
Definition: type_lpi.h:33
static SCIP_RETCODE lpSetFeastol(SCIP_LP *lp, SCIP_Real feastol, SCIP_Bool *success)
Definition: lp.c:2700
Definition: struct_event.h:152
internal methods for global SCIP settings
Definition: type_lpi.h:45
void SCIPlpSetFeastol(SCIP_LP *lp, SCIP_SET *set, SCIP_Real newfeastol)
Definition: lp.c:10251
SCIP_Bool SCIPsetIsFeasGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6692
static void rowCalcActivityBounds(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6521
SCIP_RETCODE SCIPlpiGetSolFeasibility(SCIP_LPI *lpi, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lpi_clp.cpp:2391
Definition: type_retcode.h:46
void SCIPmessagePrintInfo(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:585
Definition: type_lpi.h:53
SCIP_RETCODE SCIPlpiFreeNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3609
SCIP_RETCODE SCIPlpiDelRows(SCIP_LPI *lpi, int firstrow, int lastrow)
Definition: lpi_clp.cpp:977
SCIP_Bool SCIPsetIsEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6228
Definition: type_clock.h:35
SCIP_Real SCIPlpGetObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13099
SCIP_Bool SCIPlpIsFeasNegative(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18888
void SCIProwPrint(SCIP_ROW *row, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:5294
static SCIP_RETCODE rowLink(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2427
static SCIP_RETCODE colDelCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos)
Definition: lp.c:1810
SCIP_Bool SCIPsetIsFeasLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6648
SCIP_Bool SCIProwIsSolEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_Bool root)
Definition: lp.c:6903
Definition: type_lpi.h:71
Definition: type_lp.h:34
static SCIP_RETCODE rowSideChanged(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp, SCIP_SIDETYPE sidetype)
Definition: lp.c:2291
static SCIP_RETCODE rowEventSideChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1515
static SCIP_RETCODE allocDiveChgSideArrays(SCIP_LP *lp, int initsize)
Definition: lp.c:9005
Definition: type_retcode.h:34
SCIP_RETCODE SCIProwRelease(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5347
static SCIP_RETCODE lpSolve(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12020
SCIP_RETCODE SCIPlpGetDualDegeneracy(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *degeneracy, SCIP_Real *varconsratio)
Definition: lp.c:18641
SCIP_RETCODE SCIPlpReset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9410
SCIP_Real SCIProwGetSolActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6461
internal methods for problem variables
static void computeLPBounds(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, SCIP_Real lpiinf, SCIP_Real *lb, SCIP_Real *ub)
Definition: lp.c:7965
SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval)
Definition: lpi_clp.cpp:2752
SCIP_RETCODE SCIPlpiDelRowset(SCIP_LPI *lpi, int *dstat)
Definition: lpi_clp.cpp:1009
public data structures and miscellaneous methods
SCIP_Bool SCIPlpIsFeasGT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18826
SCIP_RETCODE SCIPlpClear(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9766
SCIP_Bool SCIPlpIsFeasGE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18846
void SCIPlpRecomputeLocalAndGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13182
SCIP_Bool SCIPlpiHasStateBasis(SCIP_LPI *lpi, SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3508
SCIP_RETCODE SCIPlpiDelCols(SCIP_LPI *lpi, int firstcol, int lastcol)
Definition: lpi_clp.cpp:828
Definition: type_lpi.h:74
static void recomputePseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:812
static SCIP_RETCODE lpDelRowset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int *rowdstat)
Definition: lp.c:15367
SCIP_RETCODE SCIPlpFree(SCIP_LP **lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9365
SCIP_RETCODE SCIPeventCreateRowSideChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:971
SCIP_RETCODE SCIPlpiGetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3375
SCIP_RETCODE SCIPconsRelease(SCIP_CONS **cons, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: cons.c:6203
static SCIP_RETCODE ensureRowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:317
SCIP_RETCODE SCIPlpGetBInvRow(SCIP_LP *lp, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9845
Definition: type_lpi.h:70
SCIP_RETCODE SCIPcolChgLb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newlb)
Definition: lp.c:3752
Definition: struct_lp.h:192
static int colSearchCoefPart(SCIP_COL *col, const SCIP_ROW *row, int minpos, int maxpos)
Definition: lp.c:1092
static SCIP_RETCODE lpSetMarkowitz(SCIP_LP *lp, SCIP_Real threshhold, SCIP_Bool *success)
Definition: lp.c:3135
public methods for LP management
void SCIPcolSetStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real lpobjval, SCIP_Real primsol, SCIP_Real sbdown, SCIP_Real sbup, SCIP_Bool sbdownvalid, SCIP_Bool sbupvalid, SCIP_Longint iter, int itlim)
Definition: lp.c:4205
Definition: type_lpi.h:57
static SCIP_RETCODE rowDelCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos)
Definition: lp.c:2175
SCIP_Bool SCIPprobAllColsInLP(SCIP_PROB *prob, SCIP_SET *set, SCIP_LP *lp)
Definition: prob.c:2300
Definition: type_lpi.h:61
Definition: type_lpi.h:43
Definition: type_lpi.h:42
Definition: type_var.h:41
SCIP_RETCODE SCIProwDelCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col)
Definition: lp.c:5425
SCIP_RETCODE SCIPlpCreate(SCIP_LP **lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, const char *name)
Definition: lp.c:9073
SCIP_RETCODE SCIPsetSetCharParam(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *name, char value)
Definition: set.c:3460
datastructures for problem statistics
SCIP_Real SCIProwGetSolEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6860
SCIP_Real SCIProwGetRelaxEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6919
static SCIP_RETCODE ensureColsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:251
SCIP_RETCODE SCIPlpRemoveRedundantRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15895
SCIP_Bool SCIPsetIsFeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6626
SCIP_Bool SCIPsetIsSumEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6437
SCIP_RETCODE SCIPcolChgUb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newub)
Definition: lp.c:3797
SCIP_RETCODE SCIPlpGetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10128
SCIP_RETCODE SCIPsetGetCharParam(SCIP_SET *set, const char *name, char *value)
Definition: set.c:3215
SCIP_RETCODE SCIProwDropEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: lp.c:7852
SCIP_RETCODE SCIPcolFree(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:3372
void SCIPcolPrint(SCIP_COL *col, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:3402
static int lpGetResolveItlim(SCIP_SET *set, SCIP_STAT *stat, int itlim)
Definition: lp.c:12384
static int rowSearchCoefPart(SCIP_ROW *row, const SCIP_COL *col, int minpos, int maxpos)
Definition: lp.c:1167
SCIP_RETCODE SCIPeventCreateRowCoefChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:923
SCIP_CONSHDLR * SCIProwGetOriginConshdlr(SCIP_ROW *row)
Definition: lp.c:17422
static void getObjvalDeltaObj(SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj, SCIP_Real lb, SCIP_Real ub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13410
Definition: type_retcode.h:39
SCIP_RETCODE SCIPlpiChgBounds(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *lb, const SCIP_Real *ub)
Definition: lpi_clp.cpp:1075
SCIP_RETCODE SCIPcolGetStrongbranches(SCIP_COL **cols, int ncols, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4479
SCIP_Bool SCIPsetIsDualfeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6936
SCIP_Real SCIProwGetMaxActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6614
static void getObjvalDeltaLb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13541
static SCIP_RETCODE lpBarrier(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool crossover, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:11263
SCIP_Real SCIProwGetParallelism(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7719
SCIP_Real SCIPlpGetLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13138
static SCIP_RETCODE provedBound(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool usefarkas, SCIP_Real *bound)
Definition: lp.c:16347
datastructures for storing and manipulating the main problem
SCIP_Real SCIPlpGetModifiedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13312
static SCIP_RETCODE rowRestoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer, SCIP_Bool infeasible)
Definition: lp.c:572
static SCIP_RETCODE lpCheckRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value)
Definition: lp.c:2612
Definition: type_lp.h:36
methods for sorting joint arrays of various types
static SCIP_RETCODE rowEventCoefChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1457
SCIP_RETCODE SCIPlpiStrongbranchInt(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2315
Definition: type_lpi.h:47
static SCIP_RETCODE lpRemoveObsoleteCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15465
void SCIPlpStoreRootObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13158
SCIP_RETCODE SCIPlpiSolveBarrier(SCIP_LPI *lpi, SCIP_Bool crossover)
Definition: lpi_clp.cpp:1948
SCIP_Bool SCIProwIsLPEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Bool root)
Definition: lp.c:6844
SCIP_Real SCIProwGetMinActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6593
SCIP_RETCODE SCIPlpiGetPrimalRay(SCIP_LPI *lpi, SCIP_Real *ray)
Definition: lpi_clp.cpp:2818
SCIP_RETCODE SCIPlpiEndStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2004
SCIP_RETCODE SCIPlpSetCutoffbound(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real cutoffbound)
Definition: lp.c:10196
void SCIPintervalMul(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:964
internal methods for main solving loop and node processing
Definition: type_retcode.h:40
void SCIPmessageVFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr, va_list ap)
Definition: message.c:624
Definition: lpi_clp.cpp:123
Definition: struct_lp.h:260
SCIP_RETCODE SCIPlpiGetSides(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhss, SCIP_Real *rhss)
Definition: lpi_clp.cpp:1731
SCIP_RETCODE SCIPeventfilterFree(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: event.c:1837
Definition: type_lp.h:48
SCIP_Bool SCIPlpIsFeasPositive(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18877
SCIP_RETCODE SCIPlpUpdateVarObj(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:13818
static SCIP_RETCODE lpRemoveObsoleteRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15541
static SCIP_RETCODE lpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14053
static SCIP_RETCODE ensureChgrowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:182
public methods for message output
SCIP_RETCODE SCIPlpiGetBInvACol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3335
data structures for LP management
Definition: type_lpi.h:82
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:609
SCIP_Real SCIProwGetLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6249
SCIP_Bool SCIPsetIsGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6282
datastructures for problem variables
SCIP_RETCODE SCIPlpiGetObj(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *vals)
Definition: lpi_clp.cpp:1677
Definition: type_lpi.h:72
void SCIPintervalSetBounds(SCIP_INTERVAL *resultant, SCIP_Real inf, SCIP_Real sup)
Definition: intervalarith.c:421
static SCIP_RETCODE lpPrimalSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10316
internal methods for problem statistics
Definition: lpi_clp.cpp:95
SCIP_Real SCIProwGetObjParallelism(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:7795
SCIP_Bool SCIPsetIsFeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6725
SCIP_RETCODE SCIPrealarrayExtend(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int minidx, int maxidx)
Definition: misc.c:4028
Definition: type_lp.h:56
SCIP_RETCODE SCIProwCreate(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, int len, SCIP_COL **cols, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_ROWORIGINTYPE origintype, void *origin, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: lp.c:5105
SCIP_Real SCIPcolGetFarkasValue(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4156
Definition: type_lpi.h:49
SCIP_RETCODE SCIPlpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14289
internal methods for constraints and constraint handlers
SCIP_RETCODE SCIProwChgRhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real rhs)
Definition: lp.c:5693
SCIP_Bool SCIPsetIsDualfeasZero(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6925
static SCIP_RETCODE lpSetPricingChar(SCIP_LP *lp, char pricingchar)
Definition: lp.c:3045
SCIP_RETCODE SCIPlpGetPrimalRay(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *ray)
Definition: lp.c:14957
static SCIP_RETCODE lpSetIterationLimit(SCIP_LP *lp, int itlim)
Definition: lp.c:2986
SCIP_RETCODE SCIProwCalcIntegralScalar(SCIP_ROW *row, SCIP_SET *set, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: lp.c:5742
SCIP_Bool SCIPsetIsFeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6670
Definition: type_lp.h:35
SCIP_RETCODE SCIPlpGetBInvARow(SCIP_LP *lp, int r, SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9893
void SCIProwMarkNotRemovableLocal(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:7873
SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *obj)
Definition: lpi_clp.cpp:1231
Definition: type_lp.h:76
static SCIP_RETCODE colEnsureSize(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:340
SCIP_Real SCIPcolGetFarkasCoef(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4130
SCIP_Real SCIProwGetLPActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6219
static SCIP_RETCODE ignoreInstability(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool *success)
Definition: lp.c:11545
static SCIP_RETCODE lpSetScaling(SCIP_LP *lp, int scaling, SCIP_Bool *success)
Definition: lp.c:2886
Definition: type_lpi.h:69
Definition: type_lp.h:33
Definition: type_lp.h:38
Definition: struct_stat.h:50
SCIP_RETCODE SCIPlpiInterrupt(SCIP_LPI *lpi, SCIP_Bool interrupt)
Definition: lpi_clp.cpp:3881
Definition: type_lpi.h:46
Definition: type_lpi.h:83
SCIP_Bool SCIPsetIsDualfeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6947
SCIP_Real SCIPcolGetFeasibility(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3971
SCIP_RETCODE SCIPlpGetBInvACol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9918
SCIP_RETCODE SCIPlpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14165
SCIP_Real SCIPlpGetModifiedProvedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13352
Definition: struct_event.h:214
static SCIP_Real getFinitePseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:918
Definition: type_prob.h:39
void SCIPcolInvalidateStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4259
SCIP_RETCODE SCIPlpUpdateDelVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14029
SCIP_Bool SCIPlpIsFeasLT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18786
Definition: type_retcode.h:43
static SCIP_RETCODE rowEventConstantChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1487
static SCIP_RETCODE lpSetRandomseed(SCIP_LP *lp, int randomseed, SCIP_Bool *success)
Definition: lp.c:3194
SCIP_RETCODE SCIProwAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5404
SCIP_Real SCIPcolGetRedcost(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3947
SCIP_RETCODE SCIPlpiGetBInvRow(SCIP_LPI *lpi, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3227
SCIP_RETCODE SCIPlpGetSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lp.c:14328
void SCIProwRecalcPseudoActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6390
static SCIP_RETCODE lpSetThreads(SCIP_LP *lp, int threads, SCIP_Bool *success)
Definition: lp.c:2911
SCIP_Bool SCIPsetIsRelGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:7171
static SCIP_RETCODE ensureLpicolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:205
static SCIP_RETCODE rowChgCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:2235
SCIP_Bool SCIPsetIsDualfeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6837
static SCIP_RETCODE lpSetIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value, SCIP_Bool *success)
Definition: lp.c:2509
static SCIP_RETCODE lpLexDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:10665
SCIP_Longint SCIProwGetNLPsAfterCreation(SCIP_ROW *row)
Definition: lp.c:17521
static SCIP_RETCODE lpDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10474
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9022
Definition: type_lpi.h:54
static SCIP_RETCODE lpCheckBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value)
Definition: lp.c:2601
datastructures for global SCIP settings
Definition: type_lpi.h:85
#define BMSreallocBlockMemoryArray(mem, ptr, oldnum, newnum)
Definition: memory.h:451
Definition: type_lpi.h:48
Definition: struct_lp.h:84
static void lpUpdateObjNorms(SCIP_LP *lp, SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:3657
Definition: type_lpi.h:84
SCIP_RETCODE SCIPlpiIgnoreInstability(SCIP_LPI *lpi, SCIP_Bool *success)
Definition: lpi_clp.cpp:1638
SCIP_RETCODE SCIPlpiGetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real *dval)
Definition: lpi_clp.cpp:3782
SCIP_RETCODE SCIProwFree(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5254
Definition: struct_event.h:195
SCIP_Real SCIProwGetOrthogonality(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7783
SCIP_Bool SCIPsetIsFeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6736
Definition: type_stat.h:42
static SCIP_RETCODE lpSetRefactorInterval(SCIP_LP *lp, int refactor, SCIP_Bool *success)
Definition: lp.c:3247
static SCIP_RETCODE lpFlushAndSolve(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12206
static SCIP_RETCODE lpAlgorithm(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11400
SCIP_RETCODE SCIProwAddConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real addval)
Definition: lp.c:5635
SCIP_RETCODE SCIPeventCreateRowConstChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:948
SCIP_Real SCIPcolCalcFarkasCoef(SCIP_COL *col, SCIP_Real *dualfarkas)
Definition: lp.c:4025
static SCIP_RETCODE lpSetTiming(SCIP_LP *lp, SCIP_CLOCKTYPE timing, SCIP_Bool enabled, SCIP_Bool *success)
Definition: lp.c:3160
Definition: type_clock.h:36
Definition: type_lpi.h:59