All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lpi_cpx.c
Go to the documentation of this file.
31 /* CPLEX supports FASTMIP which fastens the lp solving process but therefor it might happen that there will be a loss in
35 /*--+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
57 /* this macro is only called in functions returning SCIP_Bool; thus, we return FALSE if there is an error in optimized mode */
69 /* At several places we need to guarantee to have a factorization of an optimal basis and call the simplex to produce
70 * it. In a numerical perfect world, this should need no iterations. However, due to numerical inaccuracies after
71 * refactorization, it might be necessary to do a few extra pivot steps, in particular if FASTMIP is used. */
72 #define CPX_REFACTORMAXITERS 50 /* maximal number of iterations allowed for producing a refactorization of the basis */
74 /* CPLEX seems to ignore bounds with absolute value less than 1e-10. There is no interface define for this constant yet,
78 typedef SCIP_DUALPACKET COLPACKET; /* each column needs two bits of information (basic/on_lower/on_upper) */
80 typedef SCIP_DUALPACKET ROWPACKET; /* each row needs two bit of information (basic/on_lower/on_upper) */
167 SCIP_Real conditionlimit; /**< maximum condition number of LP basis counted as stable (-1.0: no limit) */
173 #if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
174 int pseudonthreads; /**< number of threads that SCIP set for the LP solver, but due to CPLEX bug,
365 /* because the basis status values are equally defined in SCIP and CPLEX, they don't need to be transformed */
490 CHECK_ZERO( lpi->messagehdlr, CPXgetintparam(lpi->cpxenv, intparam[i], &(cpxparam->intparval[i])) );
494 CHECK_ZERO( lpi->messagehdlr, CPXgetdblparam(lpi->cpxenv, dblparam[i], &(cpxparam->dblparval[i])) );
546 CHECK_ZERO( lpi->messagehdlr, CPXsetintparam(lpi->cpxenv, intparam[i], lpi->curparam.intparval[i]) );
556 CHECK_ZERO( lpi->messagehdlr, CPXsetdblparam(lpi->cpxenv, dblparam[i], lpi->curparam.dblparval[i]) );
763 * -> To keep SCIP's meaning of the rhs value, we would like to use negative range values: rng := lhs - rhs,
771 * -> Because of this bug, we have to use an additional rhsarray[] for the converted right hand sides and
772 * use rhsarray[i] = lhs[i] and rngarray[i] = rhs[i] - lhs[i] for ranged rows to keep the range values
841 /** converts CPLEX's sen/rhs/rng triplets into SCIP's lhs/rhs pairs, only storing the left hand side */
889 /** converts CPLEX's sen/rhs/rng triplets into SCIP's lhs/rhs pairs, only storing the right hand side */
955 /** after restoring the old lp data in CPLEX we need to resolve the lp to be able to retrieve correct information */
963 /* modifying the LP, restoring the old LP, and loading the old basis is not enough for CPLEX to be able to return the
966 * this may happen after manual strong branching on an integral variable, or after conflict analysis on a strong
967 * branching conflict created a constraint that is not able to modify the LP but trigger the additional call of the
970 * In a numerical perfect world, CPX_REFACTORMAXITERS below should be zero. However, due to numerical inaccuracies
976 SCIPmessagePrintWarning(lpi->messagehdlr, "CPLEX needed %d phase 1 iterations to restore optimal basis.\n", CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp));
978 SCIPmessagePrintWarning(lpi->messagehdlr, "CPLEX needed %d iterations to restore optimal basis.\n", CPXgetitcnt(lpi->cpxenv, lpi->cpxlp));
1005 sprintf(cpxname, "CPLEX %d.%d.%d.%d", CPX_VERSION_VERSION, CPX_VERSION_RELEASE, CPX_VERSION_MODIFICATION, CPX_VERSION_FIX);
1007 sprintf(cpxname, "CPLEX %d.%d.%d.%d", CPX_VERSION/100, (CPX_VERSION%100)/10, CPX_VERSION%10, CPX_SUBVERSION);
1052 assert(sizeof(SCIP_Real) == sizeof(double)); /* CPLEX only works with doubles as floating points */
1064 #if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
1065 /* manually set number of threads to 1 to avoid huge system load due to CPLEX bug (version 1100) or segmentation fault (version 1220) */
1069 #if 0 /* turning presolve off seems to be faster than turning it off on demand (if presolve detects infeasibility) */
1215 CHECK_ZERO( lpi->messagehdlr, CPXcopylpwnames(lpi->cpxenv, lpi->cpxlp, ncols, nrows, cpxObjsen(objsen), obj,
1216 lpi->rhsarray, lpi->senarray, beg, cnt, ind, val, lb, ub, lpi->rngarray, colnames, rownames) );
1237 const int* beg, /**< start index of each column in ind- and val-array, or NULL if nnonz == 0 */
1252 CHECK_ZERO( lpi->messagehdlr, CPXaddcols(lpi->cpxenv, lpi->cpxlp, ncols, nnonz, obj, beg, ind, val, lb, ub, colnames) );
1256 CHECK_ZERO( lpi->messagehdlr, CPXnewcols(lpi->cpxenv, lpi->cpxlp, ncols, obj, lb, ub, NULL, colnames) );
1272 assert(0 <= firstcol && firstcol <= lastcol && lastcol < CPXgetnumcols(lpi->cpxenv, lpi->cpxlp));
1283 /** deletes columns from SCIP_LP; the new position of a column must not be greater that its old position */
1335 CHECK_ZERO( lpi->messagehdlr, CPXaddrows(lpi->cpxenv, lpi->cpxlp, 0, nrows, nnonz, lpi->rhsarray, lpi->senarray, beg, ind, val, NULL,
1340 CHECK_ZERO( lpi->messagehdlr, CPXnewrows(lpi->cpxenv, lpi->cpxlp, nrows, lpi->rhsarray, lpi->senarray, NULL, rownames) );
1351 CHECK_ZERO( lpi->messagehdlr, CPXchgrngval(lpi->cpxenv, lpi->cpxlp, rngcount, lpi->rngindarray, lpi->rngarray) );
1367 assert(0 <= firstrow && firstrow <= lastrow && lastrow < CPXgetnumrows(lpi->cpxenv, lpi->cpxlp));
1378 /** deletes rows from SCIP_LP; the new position of a row must not be greater that its old position */
1455 CHECK_ZERO( lpi->messagehdlr, CPXchgbds(lpi->cpxenv, lpi->cpxlp, ncols, ind, lpi->larray, (SCIP_Real*)lb) );
1456 CHECK_ZERO( lpi->messagehdlr, CPXchgbds(lpi->cpxenv, lpi->cpxlp, ncols, ind, lpi->uarray, (SCIP_Real*)ub) );
1505 CHECK_ZERO( lpi->messagehdlr, CPXchgsense(lpi->cpxenv, lpi->cpxlp, nrows, ind, lpi->senarray) );
1518 CHECK_ZERO( lpi->messagehdlr, CPXchgrngval(lpi->cpxenv, lpi->cpxlp, rngcount, lpi->rngindarray, lpi->rngarray) );
1583 /** multiplies a row with a non-zero scalar; for negative scalars, the row's sense is switched accordingly */
1608 SCIP_CALL( SCIPlpiGetRows(lpi, row, row, &lhs, &rhs, &nnonz, &beg, lpi->indarray, lpi->valarray) );
1637 /** multiplies a column with a non-zero scalar; the objective value is multiplied with the scalar, and the bounds
1665 SCIP_CALL( SCIPlpiGetCols(lpi, col, col, &lb, &ub, &nnonz, &beg, lpi->indarray, lpi->valarray) );
1764 /** gets columns from LP problem object; the arrays have to be large enough to store all values
1783 assert(0 <= firstcol && firstcol <= lastcol && lastcol < CPXgetnumcols(lpi->cpxenv, lpi->cpxlp));
1841 assert(0 <= firstrow && firstrow <= lastrow && lastrow < CPXgetnumrows(lpi->cpxenv, lpi->cpxlp));
1849 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, firstrow, lastrow) );
1850 CHECK_ZERO( lpi->messagehdlr, CPXgetrhs(lpi->cpxenv, lpi->cpxlp, lpi->rhsarray, firstrow, lastrow) );
1893 int namestoragesize, /**< size of namestorage (if 0, storageleft returns the storage needed) */
1906 assert(0 <= firstcol && firstcol <= lastcol && lastcol < CPXgetnumcols(lpi->cpxenv, lpi->cpxlp));
1910 retcode = CPXgetcolname(lpi->cpxenv, lpi->cpxlp, colnames, namestorage, namestoragesize, storageleft, firstcol, lastcol);
1927 int namestoragesize, /**< size of namestorage (if 0, -storageleft returns the storage needed) */
1940 assert(0 <= firstrow && firstrow <= lastrow && lastrow < CPXgetnumrows(lpi->cpxenv, lpi->cpxlp));
1944 retcode = CPXgetrowname(lpi->cpxenv, lpi->cpxlp, rownames, namestorage, namestoragesize, storageleft, firstrow, lastrow);
1962 assert(CPXgetobjsen(lpi->cpxenv, lpi->cpxlp) == CPX_MIN || CPXgetobjsen(lpi->cpxenv, lpi->cpxlp) == CPX_MAX);
1966 *objsen = (CPXgetobjsen(lpi->cpxenv, lpi->cpxlp) == CPX_MIN) ? SCIP_OBJSEN_MINIMIZE : SCIP_OBJSEN_MAXIMIZE;
2041 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, firstrow, lastrow) );
2042 CHECK_ZERO( lpi->messagehdlr, CPXgetrhs(lpi->cpxenv, lpi->cpxlp, lpi->rhsarray, firstrow, lastrow) );
2114 lpi->iterations = CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2127 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, NULL, &primalfeasible, &dualfeasible) );
2137 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2138 SCIPdebugMessage("presolver may have solved the problem -> calling CPLEX primal simplex again without presolve\n");
2155 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2158 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2167 SCIPerrorMessage("CPLEX primal simplex returned CPX_STAT_INForUNBD after presolving was turned off\n");
2171 /* check whether the solution is basic: if Cplex, e.g., hits a time limit in data setup, this might not be the case,
2179 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2186 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2219 lpi->iterations = CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2230 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2234 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, NULL, &primalfeasible, &dualfeasible) );
2244 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2245 SCIPdebugMessage("presolver may have solved the problem -> calling CPLEX dual simplex again without presolve\n");
2262 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2265 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, NULL, &primalfeasible, &dualfeasible) );
2266 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2275 SCIPerrorMessage("CPLEX dual simplex returned CPX_STAT_INForUNBD after presolving was turned off\n");
2279 /* check whether the solution is basic: if Cplex, e.g., hits a time limit in data setup, this might not be the case,
2287 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2294 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2299 /* this fixes the strange behavior of CPLEX, that in case of the objective limit exceedance, it returns the
2301 * (using this "wrong" dual solution can cause column generation algorithms to fail to find an improving column)
2323 SCIPdebugMessage("dual solution %g does not exceed objective limit [%g,%g] (%d iterations) -> calling CPLEX dual simplex again for one iteration\n",
2345 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2367 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2370 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2378 /** calls barrier or interior point algorithm to solve the LP with crossover to simplex basis */
2414 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2419 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2423 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2424 SCIPdebugMessage("CPLEX returned INForUNBD -> calling CPLEX barrier again without presolve\n");
2441 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2452 SCIPerrorMessage("CPLEX barrier returned CPX_STAT_INForUNBD after presolving was turned off\n");
2515 *down = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJULIM) : getDblParam(lpi, CPX_PARAM_OBJLLIM);
2521 *down = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJLLIM) : getDblParam(lpi, CPX_PARAM_OBJULIM);
2533 *down = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJULIM) : getDblParam(lpi, CPX_PARAM_OBJLLIM);
2542 *up = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJULIM) : getDblParam(lpi, CPX_PARAM_OBJLLIM);
2548 *up = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJLLIM) : getDblParam(lpi, CPX_PARAM_OBJULIM);
2560 *up = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJLLIM) : getDblParam(lpi, CPX_PARAM_OBJULIM);
2609 SCIPdebugMessage("calling CPLEX strongbranching on fractional variable %d (%d iterations)\n", col, itlim);
2677 SCIPdebugMessage("calling CPLEX strongbranching on %d fractional variables (%d iterations)\n", ncols, itlim);
2736 SCIPdebugMessage("calling CPLEX strongbranching on variable %d with integral value (%d iterations)\n", col, itlim);
2743 SCIP_CALL( lpiStrongbranchIntegral(lpi, col, psol, itlim, down, up, downvalid, upvalid, iter) );
2775 SCIPdebugMessage("calling CPLEX strongbranching on %d variables with integer values (%d iterations)\n", ncols, itlim);
2784 SCIP_CALL( lpiStrongbranchIntegral(lpi, cols[j], psols[j], itlim, &(down[j]), &(up[j]), &(downvalid[j]), &(upvalid[j]), iter) );
2829 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, NULL, &pfeas, &dfeas) );
2836 /** returns TRUE iff LP is proven to have a primal unbounded ray (but not necessary a primal feasible point);
2847 return (lpi->solstat == CPX_STAT_UNBOUNDED || lpi->solstat == CPX_STAT_OPTIMAL_FACE_UNBOUNDED);
2850 /** returns TRUE iff LP is proven to have a primal unbounded ray (but not necessary a primal feasible point),
2862 return (lpi->solstat == CPX_STAT_UNBOUNDED && CPXgetmethod(lpi->cpxenv, lpi->cpxlp) == CPX_ALG_PRIMAL);
2881 /* If the solution status of CPLEX is CPX_STAT_UNBOUNDED, it only means, there is an unbounded ray,
2882 * but not necessarily a feasible primal solution. If primalfeasible == FALSE, we cannot conclude,
2885 return ((primalfeasible && (lpi->solstat == CPX_STAT_UNBOUNDED || lpi->solstat == CPX_STAT_INForUNBD))
2905 return (lpi->solstat == CPX_STAT_INFEASIBLE || (lpi->solstat == CPX_STAT_INForUNBD && dualfeasible));
2927 /** returns TRUE iff LP is proven to have a dual unbounded ray (but not necessary a dual feasible point);
2940 /** returns TRUE iff LP is proven to have a dual unbounded ray (but not necessary a dual feasible point),
2952 return (lpi->solstat == CPX_STAT_INFEASIBLE && CPXgetmethod(lpi->cpxenv, lpi->cpxlp) == CPX_ALG_DUAL);
2971 return (dualfeasible && (lpi->solstat == CPX_STAT_INFEASIBLE || lpi->solstat == CPX_STAT_INForUNBD));
3037 /* If the solution status of CPLEX is CPX_STAT_UNBOUNDED, it only means, there is an unbounded ray,
3038 * but not necessarily a feasible primal solution. If primalfeasible == FALSE, we interpret this
3051 /* If the condition number of the basis should be checked, everything above the specified threshold is counted
3060 /* if the kappa could not be computed (e.g., because we do not have a basis), we cannot check the condition */
3114 /** tries to reset the internal status of the LP solver in order to ignore an instability of the last solving call */
3185 CHECK_ZERO( lpi->messagehdlr, CPXsolution(lpi->cpxenv, lpi->cpxlp, &dummy, objval, primsol, dualsol, NULL, redcost) );
3190 CHECK_ZERO( lpi->messagehdlr, CPXgetax(lpi->cpxenv, lpi->cpxlp, activity, 0, CPXgetnumrows(lpi->cpxenv, lpi->cpxlp)-1) );
3251 * Such information is usually only available, if also a (maybe not optimal) solution is available.
3252 * The LPI should return SCIP_INVALID for @p quality, if the requested quantity is not available.
3285 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
3307 /** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
3326 /* correct rstat values for "<=" constraints: Here CPX_AT_LOWER bound means that the slack is 0, i.e., the upper bound is tight */
3338 /* because the basis status values are equally defined in SCIP and CPLEX, they don't need to be transformed */
3368 /* because the basis status values are equally defined in SCIP and CPLEX, they don't need to be transformed */
3374 /* correct rstat values for ">=" constraints: Here CPX_AT_LOWER bound means that the slack is 0, i.e., the upper bound is tight */
3391 /** returns the indices of the basic columns and rows; basic column n gives value n, basic row m gives value -1-m */
3405 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3410 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3422 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3423 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3441 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3446 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3453 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3469 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, &rowsense, basicrow, basicrow) );
3485 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3486 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3509 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3514 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3521 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3528 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, 0, nrows - 1) );
3550 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3551 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3557 const SCIP_Real* binvrow, /**< row in (A_B)^-1 from prior call to SCIPlpiGetBInvRow(), or NULL */
3570 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3575 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3582 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3598 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, &rowsense, basicrow, basicrow) );
3614 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3615 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3634 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3639 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3646 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3653 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, 0, nrows - 1) );
3701 /* if there is no basis information available (e.g. after barrier without crossover), or no state can be saved; if
3718 SCIPdebugMessage("storing CPLEX LPI state in %p (%d cols, %d rows)\n", (void *) *lpistate, ncols, nrows);
3731 /** loads LPi state (like basis information) into solver; note that the LP might have been extended with additional
3758 SCIPdebugMessage("loading LPI state %p (%d cols, %d rows) into CPLEX LP with %d cols and %d rows\n",
3903 /* if there is no basis information available (e.g. after barrier without crossover), norms cannot be saved; if
3921 SCIPdebugMessage("storing CPLEX LPI pricing norms in %p (%d rows)\n", (void *) *lpinorms, nrows);
3924 retval = CPXgetdnorms(lpi->cpxenv, lpi->cpxlp, (*lpinorms)->norm, (*lpinorms)->head, &((*lpinorms)->normlen));
3926 /* if CPLEX used the primal simplex in the last optimization call, we do not have dual norms (error 1264) */
3944 /** loads LPi pricing norms into solver; note that the LP might have been extended with additional
3974 CHECK_ZERO( lpi->messagehdlr, CPXcopydnorms(lpi->cpxenv, lpi->cpxlp, lpinorms->norm, lpinorms->head, lpinorms->normlen) );
4082 #if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
4083 /* Due to CPLEX bug, we always set the thread count to 1. In order to fulfill an assert in lp.c, we have to
4183 #if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
4184 /* Due to CPLEX bug, we always set the thread count to 1. In order to fulfill an assert in lp.c, we have to
SCIP_RETCODE SCIPlpiGetDualfarkas(SCIP_LPI *lpi, SCIP_Real *dualfarkas) Definition: lpi_cpx.c:3216 Definition: type_lpi.h:58 SCIP_Bool SCIPlpiIsInfinity(SCIP_LPI *lpi, SCIP_Real val) Definition: lpi_cpx.c:4314 SCIP_RETCODE SCIPlpiSetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS *lpinorms) Definition: lpi_cpx.c:3947 Definition: type_lpi.h:50 SCIP_RETCODE SCIPlpiGetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real *dval) Definition: lpi_cpx.c:4201 SCIP_RETCODE SCIPlpiFreeNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms) Definition: lpi_cpx.c:3980 Definition: type_lpi.h:41 interface methods for specific LP solvers SCIP_RETCODE SCIPlpiAddRows(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val) Definition: lpi_cpx.c:1305 Definition: type_lpi.h:52 Definition: type_lpi.h:72 SCIP_RETCODE SCIPlpiGetSides(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhss, SCIP_Real *rhss) Definition: lpi_cpx.c:2022 Definition: type_lpi.h:89 SCIP_RETCODE SCIPlpiSetBase(SCIP_LPI *lpi, int *cstat, int *rstat) Definition: lpi_cpx.c:3348 SCIP_RETCODE SCIPlpiReadState(SCIP_LPI *lpi, const char *fname) Definition: lpi_cpx.c:3838 SCIP_RETCODE SCIPlpiGetRows(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhs, SCIP_Real *rhs, int *nnonz, int *beg, int *ind, SCIP_Real *val) Definition: lpi_cpx.c:1824 SCIP_Bool SCIPlpiHasStateBasis(SCIP_LPI *lpi, SCIP_LPISTATE *lpistate) Definition: lpi_cpx.c:3829 SCIP_Bool SCIPlpiIsPrimalInfeasible(SCIP_LPI *lpi) Definition: lpi_cpx.c:2890 SCIP_RETCODE SCIPlpiStartStrongbranch(SCIP_LPI *lpi) Definition: lpi_cpx.c:2569 SCIP_RETCODE SCIPlpiGetBInvCol(SCIP_LPI *lpi, int c, SCIP_Real *coef) Definition: lpi_cpx.c:3489 void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...) SCIP_RETCODE SCIPlpiGetBInvARow(SCIP_LPI *lpi, int r, const SCIP_Real *binvrow, SCIP_Real *coef) Definition: lpi_cpx.c:3554 Definition: lpi_cpx.c:191 SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost) Definition: lpi_cpx.c:3167 Definition: type_lpi.h:53 Definition: type_lpi.h:70 Definition: type_lpi.h:90 Definition: type_retcode.h:36 SCIP_RETCODE SCIPlpiGetSolFeasibility(SCIP_LPI *lpi, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible) Definition: lpi_cpx.c:2812 Definition: type_lpi.h:34 SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs) Definition: lpi_cpx.c:1480 Definition: type_lpi.h:44 SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval) Definition: lpi_cpx.c:4247 Definition: type_lpi.h:51 Definition: type_retcode.h:33 Definition: type_lpi.h:33 SCIP_RETCODE SCIPlpiStrongbranchInt(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter) Definition: lpi_cpx.c:2715 SCIP_RETCODE SCIPlpiStrongbranchFrac(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter) Definition: lpi_cpx.c:2585 Definition: type_lpi.h:45 SCIP_RETCODE SCIPlpiGetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate) Definition: lpi_cpx.c:3686 Definition: type_retcode.h:46 Definition: type_lpi.h:54 SCIP_RETCODE SCIPlpiGetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int *ival) Definition: lpi_cpx.c:4009 SCIP_RETCODE SCIPlpiLoadColLP(SCIP_LPI *lpi, SCIP_OBJSEN objsen, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val) Definition: lpi_cpx.c:1169 SCIP_RETCODE SCIPlpiGetRowNames(SCIP_LPI *lpi, int firstrow, int lastrow, char **rownames, char *namestorage, int namestoragesize, int *storageleft) Definition: lpi_cpx.c:1921 Definition: type_lpi.h:68 SCIP_RETCODE SCIPlpiScaleCol(SCIP_LPI *lpi, int col, SCIP_Real scaleval) Definition: lpi_cpx.c:1640 SCIP_RETCODE SCIPlpiGetBase(SCIP_LPI *lpi, int *cstat, int *rstat) Definition: lpi_cpx.c:3308 SCIP_RETCODE SCIPlpiStrongbranchesInt(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter) Definition: lpi_cpx.c:2749 SCIP_RETCODE SCIPlpiGetBounds(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lbs, SCIP_Real *ubs) Definition: lpi_cpx.c:1993 SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval) Definition: lpi_cpx.c:3138 SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen) Definition: lpi_cpx.c:1043 Definition: type_lpi.h:71 Definition: type_lpi.h:67 SCIP_RETCODE SCIPlpiChgBounds(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *lb, const SCIP_Real *ub) Definition: lpi_cpx.c:1430 Definition: type_lpi.h:57 Definition: type_lpi.h:43 SCIP_RETCODE SCIPlpiChgObjsen(SCIP_LPI *lpi, SCIP_OBJSEN objsen) Definition: lpi_cpx.c:1546 Definition: type_lpi.h:42 SCIP_RETCODE SCIPlpiGetBInvACol(SCIP_LPI *lpi, int c, SCIP_Real *coef) Definition: lpi_cpx.c:3618 SCIP_RETCODE SCIPlpiScaleRow(SCIP_LPI *lpi, int row, SCIP_Real scaleval) Definition: lpi_cpx.c:1584 SCIP_RETCODE SCIPlpiGetCoef(SCIP_LPI *lpi, int row, int col, SCIP_Real *val) Definition: lpi_cpx.c:2058 SCIP_RETCODE SCIPlpiDelRows(SCIP_LPI *lpi, int firstrow, int lastrow) Definition: lpi_cpx.c:1358 SCIP_RETCODE SCIPlpiGetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms) Definition: lpi_cpx.c:3887 Definition: type_lpi.h:47 SCIP_RETCODE SCIPlpiGetCols(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lb, SCIP_Real *ub, int *nnonz, int *beg, int *ind, SCIP_Real *val) Definition: lpi_cpx.c:1768 SCIP_RETCODE SCIPlpiChgCoef(SCIP_LPI *lpi, int row, int col, SCIP_Real newval) Definition: lpi_cpx.c:1525 SCIP_RETCODE SCIPlpiSetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE *lpistate) Definition: lpi_cpx.c:3734 Definition: type_retcode.h:40 SCIP_RETCODE SCIPlpiGetObjsen(SCIP_LPI *lpi, SCIP_OBJSEN *objsen) Definition: lpi_cpx.c:1955 SCIP_RETCODE SCIPlpiGetPrimalRay(SCIP_LPI *lpi, SCIP_Real *ray) Definition: lpi_cpx.c:3197 public methods for message output Definition: type_lpi.h:79 Definition: type_lpi.h:69 SCIP_RETCODE SCIPlpiAddCols(SCIP_LPI *lpi, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val) Definition: lpi_cpx.c:1229 SCIP_RETCODE SCIPlpiStrongbranchesFrac(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter) Definition: lpi_cpx.c:2649 Definition: type_lpi.h:49 SCIP_RETCODE SCIPlpiSolveBarrier(SCIP_LPI *lpi, SCIP_Bool crossover) Definition: lpi_cpx.c:2379 SCIP_RETCODE SCIPlpiGetBInvRow(SCIP_LPI *lpi, int r, SCIP_Real *coef) Definition: lpi_cpx.c:3426 SCIP_RETCODE SCIPlpiDelCols(SCIP_LPI *lpi, int firstcol, int lastcol) Definition: lpi_cpx.c:1263 SCIP_RETCODE SCIPlpiFreeState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate) Definition: lpi_cpx.c:3811 SCIP_RETCODE SCIPlpiGetObj(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *vals) Definition: lpi_cpx.c:1972 SCIP_RETCODE SCIPlpiWriteLP(SCIP_LPI *lpi, const char *fname) Definition: lpi_cpx.c:4359 SCIP_RETCODE SCIPlpiIgnoreInstability(SCIP_LPI *lpi, SCIP_Bool *success) Definition: lpi_cpx.c:3115 Definition: type_lpi.h:66 Definition: type_lpi.h:46 Definition: type_lpi.h:80 Definition: type_retcode.h:35 SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, int *ind, SCIP_Real *obj) Definition: lpi_cpx.c:1565 Definition: type_retcode.h:43 SCIP_RETCODE SCIPlpiGetRealSolQuality(SCIP_LPI *lpi, SCIP_LPSOLQUALITY qualityindicator, SCIP_Real *quality) Definition: lpi_cpx.c:3254 SCIP_RETCODE SCIPlpiGetBasisInd(SCIP_LPI *lpi, int *bind) Definition: lpi_cpx.c:3392 SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival) Definition: lpi_cpx.c:4099 SCIP_RETCODE SCIPlpiGetIterations(SCIP_LPI *lpi, int *iterations) Definition: lpi_cpx.c:3236 SCIP_RETCODE SCIPlpiGetColNames(SCIP_LPI *lpi, int firstcol, int lastcol, char **colnames, char *namestorage, int namestoragesize, int *storageleft) Definition: lpi_cpx.c:1887 Definition: type_lpi.h:82 Definition: type_lpi.h:48 Definition: type_lpi.h:81 SCIP_RETCODE SCIPlpiWriteState(SCIP_LPI *lpi, const char *fname) Definition: lpi_cpx.c:3855 Definition: lpi_cpx.c:129 |