|
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cons_knapsack.c
Go to the documentation of this file.
17 * @brief Constraint handler for knapsack constraints of the form \f$a^T x \le b\f$, x binary and \f$a \ge 0\f$.
24 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
42 #define CONSHDLR_ENFOPRIORITY -600000 /**< priority of the constraint handler for constraint enforcing */
43 #define CONSHDLR_CHECKPRIORITY -600000 /**< priority of the constraint handler for checking feasibility */
44 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
45 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
46 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
48 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
49 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
50 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
51 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
59 #define LINCONSUPGD_PRIORITY +100000 /**< priority of the constraint handler for upgrading of linear constraints */
62 #define MAX_DYNPROG_CAPACITY 10000 /**< maximal capacity of knapsack to apply dynamic programming */
65 #define MAX_USECLIQUES_SIZE 1000 /**< maximal number of items in knapsack where clique information is used */
66 #define MAX_ZEROITEMS_SIZE 10000 /**< maximal number of items to store in the zero list in preprocessing */
68 #define KNAPSACKRELAX_MAXDELTA 0.1 /**< maximal allowed rounding distance for scaling in knapsack relaxation */
69 #define KNAPSACKRELAX_MAXDNOM 1000LL /**< maximal allowed denominator in knapsack rational relaxation */
70 #define KNAPSACKRELAX_MAXSCALE 1000.0 /**< maximal allowed scaling factor in knapsack rational relaxation */
72 #define DEFAULT_SEPACARDFREQ 1 /**< multiplier on separation frequency, how often knapsack cuts are separated */
74 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
76 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in the root node */
77 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
79 #define DEFAULT_DISAGGREGATION TRUE /**< should disaggregation of knapsack constraints be allowed in preprocessing? */
81 #define DEFAULT_NEGATEDCLIQUE TRUE /**< should negated clique information be used in solving process */
83 #define MAXABSVBCOEF 1e+5 /**< maximal absolute coefficient in variable bounds used for knapsack relaxation */
84 #define USESUPADDLIFT FALSE /**< should lifted minimal cover inequalities using superadditive up-lifting be separated in addition */
86 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
87 #define HASHSIZE_KNAPSACKCONS 131101 /**< minimal size of hash table in linear constraint tables */
89 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
91 #define MINGAINPERNMINCOMPARISONS 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
94 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
97 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
101 #define MAXCOVERSIZEITERLEWI 1000 /**< maximal size for which LEWI are iteratively separated by reducing the feasible set */
105 #define GUBSPLITGNC1GUBS FALSE /**< should GNC1 GUB conss without F vars be split into GOC1 and GR GUB conss? */
108 /* @todo maybe use event SCIP_EVENTTYPE_VARUNLOCKED to decide for another dual-presolving run on a constraint */
121 SCIP_Longint* longints1; /**< cleared memory array, all entries are set to zero in initpre, if you use this
123 SCIP_Longint* longints2; /**< cleared memory array, all entries are set to zero in initpre, if you use this
125 SCIP_Bool* bools1; /**< cleared memory array, all entries are set to zero in initpre, if you use this
127 SCIP_Bool* bools2; /**< cleared memory array, all entries are set to zero in initpre, if you use this
129 SCIP_Bool* bools3; /**< cleared memory array, all entries are set to zero in initpre, if you use this
131 SCIP_Bool* bools4; /**< cleared memory array, all entries are set to zero in initpre, if you use this
133 SCIP_Real* reals1; /**< cleared memory array, all entries are set to zero in consinit, if you use this
145 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
147 int sepacardfreq; /**< multiplier on separation frequency, how often knapsack cuts are separated */
151 int maxsepacutsroot; /**< maximal number of cuts separated per separation round in the root node */
152 SCIP_Bool disaggregation; /**< should disaggregation of knapsack constraints be allowed in preprocessing? */
153 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
155 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
156 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
159 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
162 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
185 unsigned int presolvedtiming:4; /**< max level in which the knapsack constraint is already presolved */
190 unsigned int cliquesadded:1; /**< were the cliques of the knapsack already added to clique table? */
227 {
230 GUBCONSSTATUS_BELONGSTOSET_GF = 1, /** all GUB variables are in noncovervars F (and noncovervars R) */
232 GUBCONSSTATUS_BELONGSTOSET_GNC1 = 3, /** some GUB variables are in covervars C1, others in noncovervars R or F */
239 {
249 {
324 assert(consdata->nvars == 0 || (consdata->cliquepartition != NULL && consdata->negcliquepartition != NULL));
343 /* sort all items with same weight according to their variable index, used for hash value for fast pairwise comparison of all constraints */
353 /* sort all corresponding parts of arrays for which the weights are equal by using the variable index */
365 /* we need to make sure that our clique numbers of our normal clique will be in increasing order without gaps */
372 /* if the clique number in the normal clique at position pos is greater than the last found clique number the
383 /* we need to make sure that our clique numbers of our negated clique will be in increasing order without gaps */
390 /* if the clique number in the negated clique at position pos is greater than the last found clique number the
424 assert(consdata->nvars == 0 || (consdata->cliquepartition != NULL && consdata->negcliquepartition != NULL));
428 SCIP_CALL( SCIPcalcCliquePartition(scip, consdata->vars, consdata->nvars, consdata->cliquepartition, &consdata->ncliques) );
434 SCIP_CALL( SCIPcalcNegatedCliquePartition(scip, consdata->vars, consdata->nvars, consdata->negcliquepartition, &consdata->nnegcliques) );
544 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->weights, consdata->varssize, newsize) );
547 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
548 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->cliquepartition, consdata->varssize, newsize) );
549 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->negcliquepartition, consdata->varssize, newsize) );
657 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
663 (*consdata)->existmultaggr = (*consdata)->existmultaggr || (SCIPvarGetStatus(var) == SCIP_VARSTATUS_MULTAGGR);
668 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*consdata)->cliquepartition, (*consdata)->nvars) );
669 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*consdata)->negcliquepartition, (*consdata)->nvars) );
791 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, SCIPconsGetHdlr(cons), SCIPconsGetName(cons),
798 SCIP_CALL( SCIPaddVarToRow(scip, consdata->row, consdata->vars[i], (SCIP_Real)consdata->weights[i]) );
831 SCIPdebugMessage("adding relaxation of knapsack constraint <%s> (capacity %" SCIP_LONGINT_FORMAT "): ",
840 /** checks knapsack constraint for feasibility of given solution: returns TRUE iff constraint is feasible */
849 )
858 SCIPdebugMessage("checking knapsack constraint <%s> for feasibility of solution %p (lprows=%u)\n",
870 /* increase age of constraint; age is reset to zero, if a violation was found only in case we are in
906 if( (!ishuge && integralsum > consdata->capacity) || (ishuge && SCIPisFeasGT(scip, sum, (SCIP_Real)consdata->capacity)) )
940 * @note in case you provide the solitems or nonsolitems array you also have to provide the counter part as well
1239 /* this condition checks if we will try to allocate a correct number of bytes and do not have an overflow, while
1242 if( intcap < 0 || (intcap > 0 && (((size_t)nmyitems) > (maxsize_t / (size_t)intcap / sizeof(*optvalues)) || ((size_t)nmyitems) * ((size_t)intcap) * sizeof(*optvalues) > ((size_t)INT_MAX) )) ) /*lint !e571*/
1244 SCIPdebugMessage("Too much memory (%lu) would be consumed.\n", (unsigned long) (((size_t)nmyitems) * ((size_t)intcap) * sizeof(*optvalues))); /*lint !e571*/
1251 /* @note we do allocate normal memory instead of buffer memory, because the buffer, will not be deleted directly and
1348 /* we memorize at each step the current minimal weight to later on know which value in our optvalues matrix is valid;
1349 * all values entries of the j-th row of optvalues is valid if the index is >= allcurrminweight[j], otherwise it is
1350 * invalid, a second possibility would be to clear the whole optvalues, which should be more expensive than storing
1377 /* if index d is smaller the the current minweight then optvalues[IDX(j-1,d)] is not initialized, i.e. should
1413 /* if we cannot find any item anymore which is in our solution stop, if the following condition holds this
1422 /* collect solution items, first condition means that no next item can fit anymore, but this does */
1481 /** solves knapsack problem in maximization form approximately by solving the LP-relaxation of the problem using Dantzig's
1482 * method and rounding down the solution; if needed, one can provide arrays to store all selected items and all not
1578 assert(SCIPisFeasGE(scip, transprofits[j-1]/transweights[j-1], transprofits[j]/transweights[j]));
1761 /* delete variable from GUB by swapping it replacing in by the last variable in the GUB constraint */
1766 /* decrease space allocated for the GUB constraint, if the last GUBCONSGROWVALUE+1 array entries are now empty */
1782 /** moves variable from current GUB constraint to a different existing (nonempty) GUB constraint */
1791 )
1807 SCIPdebugMessage(" moving variable<%s> from GUB<%d> to GUB<%d>\n", SCIPvarGetName(vars[var]), oldgubcons, newgubcons);
1811 /* delete variable from old GUB constraint by replacing it by the last variable of the GUB constraint */
1814 /* in GUB set, update stored index of variable in old GUB constraint for the variable used for replacement;
1823 assert(gubset->gubconss[newgubcons]->gubvars[gubset->gubconss[newgubcons]->ngubvars-1] == var);
1825 /* in GUB set, update stored index of GUB of moved variable and stored index of variable in this GUB constraint */
1840 /* if empty GUB was not the last one in GUB set data structure, replace it by last GUB constraint */
1846 /* in GUB set, update stored index of GUB constraint for all variable of the GUB constraint used for replacement;
1859 /* variable should be at given new position, unless new GUB constraint replaced empty old GUB constraint
1913 /** initializes partition of knapsack variables into nonoverlapping trivial GUB constraints (GUB with one variable) */
1922 {
1954 /* already updated status of variable in GUB constraint if it exceeds the capacity of the knapsack */
1956 (*gubset)->gubconss[(*gubset)->gubconssidx[i]]->gubvarsstatus[(*gubset)->gubvarsidx[i]] = GUBVARSTATUS_CAPACITYEXCEEDED;
2018 /* checks for all knapsack vars consistency of stored index of associated gubcons and corresponding index in gubvars */
2026 SCIPdebugMessage(" var<%d> should be in GUB<%d> at position<%d>, but stored is var<%d> instead\n", i,
2063 /* @todo: in case we used also negated cliques for the GUB partition, this assert has to be changed */
2075 * afterwards the output array contains one value for each variable, such that two variables got the same value iff they
2077 * the first variable is always assigned to clique 0, and a variable can only be assigned to clique i if at least one of
2079 * note: in contrast to SCIPcalcCliquePartition(), variables with LP value 1 are put into trivial cliques (with one
2080 * variable) and for the remaining variables, a partition with a small number of cliques is constructed
2086 SCIP_VAR**const vars, /**< binary variables in the clique from which at most one can be set to 1 */
2089 int*const ncliques, /**< pointer to store number of cliques actually contained in the partition */
2091 )
2136 /* ignore variables with LP value 1 (will be assigned to trivial GUBs at the end) and sort remaining variables
2151 /* remaining variables are put to the front of varseq array and will be sorted by their number of cliques */
2159 /* sort variables with LP value less than 1 by nondecreasing order of the number of cliques they are in */
2220 /* if we had too many variables fill up the cliquepartition and put each variable in a separate clique */
2241 /** constructs sophisticated partition of knapsack variables into non-overlapping GUBs; current partition uses trivial GUBs */
2270 SCIP_CALL( GUBsetCalcCliquePartition(scip, vars, nvars, cliquepartition, &ncliques, solvals) );
2293 /* corresponding GUB constraint in GUB set data structure was already constructed (as initial trivial GUB);
2294 * note: no assert for gubconssidx, because it can changed due to deleting empty GUBs in GUBsetMoveVar()
2307 /* move variable to GUB constraint defined by clique partition; index of this GUB constraint is given by the
2311 assert(newgubconsidx != currentgubconsidx); /* because initially every variable is in a different GUB */
2335 /** gets a most violated cover C (\f$\sum_{j \in C} a_j > a_0\f$) for a given knapsack constraint \f$\sum_{j \in N} a_j x_j \leq a_0\f$
2336 * taking into consideration the following fixing: \f$j \in C\f$, if \f$j \in N_1 = \{j \in N : x^*_j = 1\}\f$ and
2353 SCIP_Bool modtransused, /**< should modified transformed separation problem be used to find cover */
2355 SCIP_Bool* fractional /**< pointer to store whether the LP sol for knapsack vars is fractional */
2451 /* sets whether the LP solution x* for the knapsack variables is fractional; if it is not fractional we stop
2520 /* solves (modified) transformed knapsack problem approximately by solving the LP-relaxation of the (modified)
2526 SCIP_CALL( SCIPsolveKnapsackApproximately(scip, nitems, transweights, transprofits, transcapacity, items,
2528 assert(checkSolveKnapsack(scip, nitems, transweights, transprofits, items, weights, solvals, modtransused));
2598 /* checks if all variables before index j cannot be removed, i.e. i cannot be the next minweightidx */
2610 /** gets partition \f$(C_1,C_2)\f$ of minimal cover \f$C\f$, i.e. \f$C_1 \cup C_2 = C\f$ and \f$C_1 \cap C_2 = \emptyset\f$,
2611 * with \f$C_1\f$ not empty; chooses partition as follows \f$C_2 = \{ j \in C : x^*_j = 1 \}\f$ and \f$C_1 = C \setminus C_2\f$
2659 /** changes given partition (C_1,C_2) of minimal cover C, if |C1| = 1, by moving one and two (if possible) variables from
2670 )
2701 /** changes given partition (C_1,C_2) of feasible set C, if |C1| = 1, by moving one variable from C2 to C1 */
2710 )
2739 /** gets partition \f$(F,R)\f$ of \f$N \setminus C\f$ where \f$C\f$ is a minimal cover, i.e. \f$F \cup R = N \setminus C\f$
2740 * and \f$F \cap R = \emptyset\f$; chooses partition as follows \f$R = \{ j \in N \setminus C : x^*_j = 0 \}\f$ and
2788 /** sorts variables in F, C_2, and R according to the second level lifting sequence that will be used in the sequential
2827 * sequence 1: non-increasing absolute difference between x*_j and the value the variable is fixed to, i.e.
2874 /** categorizies GUBs of knapsack GUB partion into GOC1, GNC1, GF, GC2, and GR and computes a lifting sequence of the GUBs
2899 int* ngubconscapexceed, /**< pointer to store number of GUBs with only capacity exceeding variables */
2962 * afterwards all GUBs (except GOC1 GUBs, which we do not need to lift) are sorted by a two level lifting sequence.
2965 * GFC1: non-increasing number of variables in F and non-increasing max{x*_k : k in GFC1_j} in case of equality
2988 * furthermore, sort C1 variables as needed for initializing the minweight table (non-increasing a_j).
3108 /* stores GUBs of group GC1 (GOC1+GNC1) and part of the GUBs of group GFC1 (GNC1 GUBs) and sorts variables in these GUBs
3127 /* current C1 variable is put to the front of its GUB where C1 part is stored by non-decreasing weigth;
3134 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3142 /* determine the status of the current GUB constraint, GOC1 or GNC1; GUBs involving R variables are split into
3166 if( solvals[gubset->gubconss[gubconsidx]->gubvars[j]] > sortkeypairsGFC1[*ngubconsGFC1]->key2 )
3212 assert(movevarstatus == GUBVARSTATUS_BELONGSTOSET_R || movevarstatus == GUBVARSTATUS_CAPACITYEXCEEDED);
3244 /* stores GUBs of group GC2 (only trivial GUBs); sorting is not required because the C2 variables (which we loop over)
3273 /* stores remaining part of the GUBs of group GFC1 (GF GUBs) and gets GUB sorting keys corresp. to following ordering
3288 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3310 if( solvals[gubset->gubconss[gubconsidx]->gubvars[j]] > sortkeypairsGFC1[*ngubconsGFC1]->key2 )
3324 /* stores GUBs of group GR; sorting is not required because the R variables (which we loop over) are already sorted
3338 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3360 /* update number of GUBs with only capacity exceeding variables (will not be used for lifting) */
3361 (*ngubconscapexceed) = ngubconss - (ngubconsGOC1 + (*ngubconsGC2) + (*ngubconsGFC1) + (*ngubconsGR));
3405 {
3439 * sum_{j in M_1} x_j + sum_{j in F} alpha_j x_j + sum_{j in M_2} alpha_j x_j + sum_{j in R} alpha_j x_j
3443 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in M_2, and
3444 * sequential up-lifting for the variables in R; procedure can be used to strengthen minimal cover inequalities and
3507 /* sets lifting coefficient of variables in M1, sorts variables in M1 such that a_1 <= a_2 <= ... <= a_|M1|
3562 * sets z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} } = liftrhs,
3570 * uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} }
3578 assert((*liftrhs) + 1 >= minweightslen || minweights[(*liftrhs) + 1] > capacity - fixedonesweight - weight);
3605 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3618 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
3660 * z = max { w : 0 <= w <= |M_1| + sum_{k=1}^{i-1} alpha_{j_k}, minweights_[w] <= a_0 - fixedonesweight + a_{j_i}}
3694 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3707 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
3755 /* uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - a_{j_i} }
3789 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3888 * sum_{j in C_1} x_j + sum_{j in F} alpha_j x_j + sum_{j in C_2} alpha_j x_j + sum_{j in R} alpha_j x_j
3891 * S = { x in {0,1}^|N| : sum_{j in N} a_j x_j <= a_0; sum_{j in Q_i} x_j <= 1, forall i in I };
3993 /* gets GOC1 and GNC1 GUBs, sets lifting coefficient of variables in C1 and calculates activity of the current
4023 assert(ngubconsGOC1 + ngubconsGFC1 + ngubconsGC2 + ngubconsGR == ngubconss - ngubconscapexceed);
4026 /* initialize the minweight tables, defined as: for i = 1,...,m with m = |I| and w = 0,...,|gubconsGC1|;
4040 /* initialize finished table; note that variables in GOC1 GUBs (includes C1 and capacity exceeding variables)
4042 * GUBs in the group GCI are sorted by non-decreasing min{ a_k : k in GC1_j } where min{ a_k : k in GC1_j } always
4078 * GUBs in the group GCI are sorted by non-decreasing min{ a_k : k in GC1_j } where min{ a_k : k in GC1_j } always
4114 * we can directly initialize minweights instead of computing it from finished and unfinished (which would be more time
4148 /* gets sum of weights of variables fixed to one, i.e. sum of weights of C2 variables GC2 GUBs */
4171 /* GNC1 GUB: update unfinished table (remove current GUB, i.e., remove min weight of C1 vars in GUB) and
4181 /* get number of C1 variables of current GNC1 GUB and put them into array of variables in GUB that
4189 /* update unfinished table by removing current GNC1 GUB, i.e, remove C1 variable with minimal weight
4190 * unfinished[w] = MAX{unfinished[w], unfinished[w+1] - weight}, "weight" is the minimal weight of current GUB
4212 /* GF GUB: no update of unfinished table (and minweight table) required because GF GUBs have no C1 variables and
4224 /* compute lifting coefficient of F and R variables in GNC1 and GF GUBs (C1 vars have already liftcoef 1) */
4250 * sets z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} } = liftrhs,
4258 * binary search to find z = max {w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i}}
4262 assert((*liftrhs) + 1 >= minweightslen || minweights[(*liftrhs) + 1] > capacity - fixedonesweight - weight);
4302 * and finished and minweight table can be updated easily as only C1 variables need to be considered;
4311 * finished[w] = MIN{finished[w], finished[w-1] + weight}, "weight" is the minimal weight of current GUB
4312 * minweights[w] = MIN{minweights[w], minweights[w-1] + weight}, "weight" is the minimal weight of current GUB
4335 * w = |gubconsGC1| + sum_{k=1,2,..,i-1}sum_{j in Q_k} alpha_j+1,..,|C1| + sum_{k=1,2,..,i}sum_{j in Q_k} alpha_j
4343 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + sumliftcoef) );
4346 * note that instead of computing minweight table from updated finished and updated unfinished table again
4347 * (for the lifting coefficient, we had to update unfinished table and compute minweight table), we here
4348 * only need to update the minweight table and the updated finished in the same way (i.e., computing for minweight
4349 * not needed because only finished table changed at this point and the change was "adding" one weight)
4394 /* note: now the unfinished table no longer exists, i.e., it is "0, MAX, MAX, ..." and minweight equals to finished;
4408 liftvar = gubset->gubconss[liftgubconsidx]->gubvars[0]; /* C2 GUBs contain only one variable */
4416 * z = max { w : 0 <= w <= |C_1| + sum_{k=1}^{i-1} alpha_{j_k}, minweights_[w] <= a_0 - fixedonesweight + a_{j_i}}
4432 assert(left == minweightslen - 1 || minweights[left + 1] > capacity - fixedonesweight + weight);
4450 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
4461 * w = |C1| + sum_{k=1,2,...,i-1}sum_{j in Q_k} alpha_j + 1 , ... , |C1| + sum_{k=1,2,...,i}sum_{j in Q_k} alpha_j
4463 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
4525 /* uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - a_{j_i} }
4565 /* minweight table and activity of current valid inequality will not change if (sum of alpha_{j_i} in GUB) = 0 */
4642 SCIP_Real* liftcoefs, /**< pointer to store lifting coefficient of vars in knapsack constraint */
4678 /* sets lifting coefficient of variables in C, sorts variables in C such that a_1 >= a_2 >= ... >= a_|C|
4756 /** separates lifted minimal cover inequalities using sequential up- and down-lifting and GUB information, if wanted, for
4802 /* gets partition (C_1,C_2) of C, i.e. C_1 & C_2 = C and C_1 cap C_2 = emptyset, with C_1 not empty; chooses partition
4807 getPartitionCovervars(scip, solvals, mincovervars, nmincovervars, varsC1, varsC2, &nvarsC1, &nvarsC2);
4810 assert(nvarsC1 >= 0); /* nvarsC1 > 0 does not always hold, because relaxed knapsack conss may already be violated */
4812 /* changes partition (C_1,C_2) of minimal cover C, if |C1| = 1, by moving one variable from C2 to C1 */
4820 /* gets partition (F,R) of N\C, i.e. F & R = N\C and F cap R = emptyset; chooses partition as follows
4824 getPartitionNoncovervars(scip, solvals, nonmincovervars, nnonmincovervars, varsF, varsR, &nvarsF, &nvarsR);
4831 /* sorts variables in F, C_2, R according to the second level lifting sequence that will be used in the sequential
4834 SCIP_CALL( getLiftingSequence(scip, solvals, weights, varsF, varsC2, varsR, nvarsF, nvarsC2, nvarsR) );
4840 * to a valid inequality sum_{j in C_1} x_j + sum_{j in N\C_1} alpha_j x_j <= |C_1| - 1 + sum_{j in C_2} alpha_j for
4844 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in C_2 and sequential
4847 SCIP_CALL( sequentialUpAndDownLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, varsC1, varsC2,
4881 /* categorizies GUBs of knapsack GUB partion into GOC1, GNC1, GF, GC2, and GR and computes a lifting sequence of
4884 SCIP_CALL( getLiftingSequenceGUB(scip, gubset, solvals, weights, varsC1, varsC2, varsF, varsR, nvarsC1,
4885 nvarsC2, nvarsF, nvarsR, gubconsGC1, gubconsGC2, gubconsGFC1, gubconsGR, &ngubconsGC1, &ngubconsGC2,
4893 * to a valid inequality sum_{j in C_1} x_j + sum_{j in N\C_1} alpha_j x_j <= |C_1| - 1 + sum_{j in C_2} alpha_j for
4895 * S = { x in {0,1}^|N| : sum_{j in N} a_j x_j <= a_0, sum_{j in Q_i} x_j <= 1, forall i in I },
4901 SCIP_CALL( sequentialUpAndDownLiftingGUB(scip, gubset, vars, nconstightened, weights, capacity, solvals, gubconsGC1,
4923 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcseq%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
4924 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
4930 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcseq_%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
4931 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
4936 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
4939 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
4992 /** separates lifted extended weight inequalities using sequential up- and down-lifting for given knapsack problem */
5036 /* gets partition (T_1,T_2) of T, i.e. T_1 & T_2 = T and T_1 cap T_2 = emptyset, with T_1 not empty; chooses partition
5041 getPartitionCovervars(scip, solvals, feassetvars, nfeassetvars, varsT1, varsT2, &nvarsT1, &nvarsT2);
5044 /* changes partition (T_1,T_2) of feasible set T, if |T1| = 0, by moving one variable from T2 to T1 */
5047 SCIP_CALL( changePartitionFeasiblesetvars(scip, weights, varsT1, varsT2, &nvarsT1, &nvarsT2) );
5052 /* gets partition (F,R) of N\T, i.e. F & R = N\T and F cap R = emptyset; chooses partition as follows
5056 getPartitionNoncovervars(scip, solvals, nonfeassetvars, nnonfeassetvars, varsF, varsR, &nvarsF, &nvarsR);
5060 /* sorts variables in F, T_2, and R according to the second level lifting sequence that will be used in the sequential
5061 * lifting procedure (the variable removed last from the initial cover does not have to be lifted first, therefore it
5064 SCIP_CALL( getLiftingSequence(scip, solvals, weights, varsF, varsT2, varsR, nvarsF, nvarsT2, nvarsR) );
5070 * to a valid inequality sum_{j in T_1} x_j + sum_{j in N\T_1} alpha_j x_j <= |T_1| + sum_{j in T_2} alpha_j for
5074 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in T_2 and sequential
5077 SCIP_CALL( sequentialUpAndDownLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, varsT1, varsT2, varsF, varsR,
5090 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_ewseq%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
5091 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
5097 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_ewseq_%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
5098 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5103 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5106 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5159 /** separates lifted minimal cover inequalities using superadditive up-lifting for given knapsack problem */
5202 SCIP_CALL( superadditiveUpLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, mincovervars,
5217 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcsup%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
5218 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
5224 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcsup%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
5225 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5230 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5233 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5245 SCIP_CALL( SCIPaddVarToRow(scip, row, vars[nonmincovervars[j]], realliftcoefs[nonmincovervars[j]]) );
5269 /** converts given cover C to a minimal cover by removing variables in the reverse order in which the variables were chosen
5270 * to be in C, i.e. in the order of non-increasing (1 - x*_j)/a_j, if the transformed separation problem was used to find
5271 * C and in the order of non-increasing (1 - x*_j), if the modified transformed separation problem was used to find C;
5311 * such that (1 - x*_1)/a_1 >= ... >= (1 - x*_|C|)/a_|C|, if trans separation problem was used to find C
5312 * such that (1 - x*_1) >= ... >= (1 - x*_|C|), if modified trans separation problem was used to find C
5313 * note that all variables with x*_j = 1 are in the end of the sorted C, so they will be removed last from C
5357 assert(checkMinweightidx(weights, capacity, covervars, *ncovervars, *coverweight, minweightidx, j));
5410 /** converts given initial cover C_init to a feasible set by removing variables in the reverse order in which
5413 * non-increasing (1 - x*_j), if modified transformed separation problem was used to find C_init.
5414 * separates lifted extended weight inequalities using sequential up- and down-lifting for this feasible set
5462 * such that (1 - x*_1)/a_1 >= ... >= (1 - x*_|C|)/a_|C|, if trans separation problem was used to find C
5463 * such that (1 - x*_1) >= ... >= (1 - x*_|C|), if modified trans separation problem was used to find C
5464 * note that all variables with x*_j = 1 are in the end of the sorted C, so they will be removed last from C
5484 /* removes variables from C_init and separates lifted extended weight inequalities using sequential up- and down-lifting;
5501 SCIP_CALL( separateSequLiftedExtendedWeightInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity, solvals,
5574 SCIPdebugPrintf("%+" SCIP_LONGINT_FORMAT "<%s>(%g)", weights[i], SCIPvarGetName(vars[i]), solvals[i]);
5580 /* LMCI1 (lifted minimal cover inequalities using sequential up- and down-lifting) using GUB information
5602 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5621 /* converts initial cover C_init to a minimal cover C by removing variables in the reverse order in which the
5622 * variables were chosen to be in C_init; note that variables with x*_j = 1 will be removed last
5624 SCIP_CALL( makeCoverMinimal(scip, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5627 /* only separate with GUB information if we have at least one nontrivial GUB (with more than one variable) */
5630 /* separates lifted minimal cover inequalities using sequential up- and down-lifting and GUB information */
5631 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5636 /* separates lifted minimal cover inequalities using sequential up- and down-lifting, but do not use trivial
5639 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5661 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5672 /* converts initial cover C_init to a minimal cover C by removing variables in the reverse order in which the
5673 * variables were chosen to be in C_init; note that variables with x*_j = 1 will be removed last
5675 SCIP_CALL( makeCoverMinimal(scip, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5679 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5686 SCIP_CALL( separateSupLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5687 solvals, covervars, noncovervars, ncovervars, nnoncovervars, coverweight, sol, cutoff, ncuts) );
5703 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5711 /* converts initial cover C_init to a feasible set by removing variables in the reverse order in which
5712 * they were chosen to be in C_init and separates lifted extended weight inequalities using sequential
5715 SCIP_CALL( getFeasibleSet(scip, cons, sepa, vars, nvars, ntightened, weights, capacity, solvals, covervars, noncovervars,
5729 /* relaxes given general linear constraint into a knapsack constraint and separates lifted knapsack cover inequalities */
5736 SCIP_Real* knapvals, /**< coefficient of the variables in the continuous knapsack constraint */
5737 SCIP_Real valscale, /**< -1.0 if lhs of row is used as rhs of c. k. constraint, +1.0 otherwise */
5769 SCIPdebugMessage("separate linear constraint <%s> relaxed to knapsack\n", cons != NULL ? SCIPconsGetName(cons) : "-");
5774 /* all variables which are of integral type can be potentially of binary type; this can be checked via the method SCIPvarIsBinary(var) */
5807 /* next if condition should normally not be true, because it means that presolving has created more binary
5808 * variables than binary + integer variables existed at the constraint initialization method, but for example if you would
5819 BMSclearMemoryArray(&(conshdlrdata->reals1[oldsize]), conshdlrdata->reals1size - oldsize); /*lint !e866 */
5837 * - a_j < 0: x_j = lb or x_j = b*z + d with variable lower bound b*z + d with binary variable z
5838 * - a_j > 0: x_j = ub or x_j = b*z + d with variable upper bound b*z + d with binary variable z
5862 SCIPdebugMessage(" -> binary variable %+.15g<%s>(%.15g)\n", valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var));
5890 if( (bvlb[j] >= 0.0 && SCIPisGT(scip, bvlb[j] * SCIPvarGetLbLocal(zvlb[j]) + dvlb[j], SCIPvarGetUbLocal(var))) ||
5891 (bvlb[j] <= 0.0 && SCIPisGT(scip, bvlb[j] * SCIPvarGetUbLocal(zvlb[j]) + dvlb[j], SCIPvarGetUbLocal(var))) )
5896 bvlb[j], SCIPvarGetName(zvlb[j]), SCIPvarGetLbLocal(zvlb[j]), SCIPvarGetUbLocal(zvlb[j]), dvlb[j]);
5917 SCIPdebugMessage(" -> non-binary variable %+.15g<%s>(%.15g) replaced with lower bound %.15g (rhs=%.15g)\n",
5918 valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var), SCIPvarGetLbGlobal(var), rhs);
5922 assert(0 <= SCIPvarGetProbindex(zvlb[bestlbtype]) && SCIPvarGetProbindex(zvlb[bestlbtype]) < nbinvars);
5936 SCIPdebugMessage(" -> non-binary variable %+.15g<%s>(%.15g) replaced with variable lower bound %+.15g<%s>(%.15g) %+.15g (rhs=%.15g)\n",
5970 if( (bvub[j] >= 0.0 && SCIPisLT(scip, bvub[j] * SCIPvarGetUbLocal(zvub[j]) + dvub[j], SCIPvarGetLbLocal(var))) ||
5971 (bvub[j] <= 0.0 && SCIPisLT(scip, bvub[j] * SCIPvarGetLbLocal(zvub[j]) + dvub[j], SCIPvarGetLbLocal(var))) )
5976 bvub[j], SCIPvarGetName(zvub[j]), SCIPvarGetLbLocal(zvub[j]), SCIPvarGetUbLocal(zvub[j]), dvub[j]);
5997 SCIPdebugMessage(" -> non-binary variable %+.15g<%s>(%.15g) replaced with upper bound %.15g (rhs=%.15g)\n",
5998 valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var), SCIPvarGetUbGlobal(var), rhs);
6002 assert(0 <= SCIPvarGetProbindex(zvub[bestubtype]) && SCIPvarGetProbindex(zvub[bestubtype]) < nbinvars);
6016 SCIPdebugMessage(" -> non-binary variable %+.15g<%s>(%.15g) replaced with variable upper bound %+.15g<%s>(%.15g) %+.15g (rhs=%.15g)\n",
6030 /* calculate scalar which makes all coefficients integral in relative allowed difference in between
6033 SCIP_CALL( SCIPcalcIntegralScalar(binvals, nbinvars, -SCIPepsilon(scip), KNAPSACKRELAX_MAXDELTA,
6037 /* if coefficients cannot be made integral, we have to use a scalar of 1.0 and only round fractional coefficients down */
6062 SCIPdebugMessage(" -> positive scaled binary variable %+" SCIP_LONGINT_FORMAT "<%s> (unscaled %.15g): not changed (rhs=%.15g)\n",
6072 SCIPdebugMessage(" -> negative scaled binary variable %+" SCIP_LONGINT_FORMAT "<%s> (unscaled %.15g): substituted by (1 - <%s>) (rhs=%.15g)\n",
6097 SCIPdebugMessage(" -> linear constraint <%s> relaxed to knapsack:", cons != NULL ? SCIPconsGetName(cons) : "-");
6101 SCIPdebugPrintf(" %+" SCIP_LONGINT_FORMAT "<%s>(%.15g)", consvals[i], SCIPvarGetName(consvars[i]),
6105 SCIPdebugPrintf(" <= %" SCIP_LONGINT_FORMAT " (%.15g) [act: %.15g, min: %" SCIP_LONGINT_FORMAT " max: %" SCIP_LONGINT_FORMAT "]\n",
6120 SCIP_CALL( SCIPseparateKnapsackCuts(scip, cons, sepa, consvars, nconsvars, consvals, capacity, sol, usegubs, cutoff, ncuts) );
6181 SCIP_CALL( SCIPseparateKnapsackCuts(scip, cons, NULL, consdata->vars, consdata->nvars, consdata->weights,
6224 SCIP_CALL( consdataEnsureVarsSize(scip, consdata, consdata->nvars+1, SCIPconsIsTransformed(cons)) );
6249 if( !consdata->existmultaggr && SCIPvarGetStatus(SCIPvarGetProbvar(var)) == SCIP_VARSTATUS_MULTAGGR )
6336 /* if the clique number is equal to the number of variables we have only cliques with one element, so we don't
6347 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6353 /* if the old clique number was greater than the new one we have to check that before a bigger clique number
6362 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6365 /* if we reached the end in the for loop, it means we have deleted the last element of the clique with
6371 /* if the old clique number was smaller than the new one we have to check the front for an element with
6376 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->cliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6379 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6381 /* if we deleted the last element of the clique with biggest index, we have to decrease the clique number */
6385 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->cliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6400 /* if the clique number is equal to the number of variables we have only cliques with one element, so we don't
6411 consdata->negcliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6417 /* if the old clique number was greater than the new one we have to check that, before a bigger clique number
6426 consdata->negcliquepartitioned = FALSE; /* recalculate the negated clique partition after a coefficient was removed */
6429 /* if we reached the end in the for loop, it means we have deleted the last element of the clique with
6435 /* if the old clique number was smaller than the new one we have to check the front for an element with
6440 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->negcliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6443 consdata->negcliquepartitioned = FALSE; /* recalculate the negated clique partition after a coefficient was removed */
6445 /* if we deleted the last element of the clique with biggest index, we have to decrease the clique number */
6449 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->negcliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6454 /* otherwise if the old clique number is equal to the new one the cliquepartition should be ok */
6565 SCIPsortPtrPtrLongIntInt((void**)consdata->vars, (void**)consdata->eventdata, consdata->weights,
6566 consdata->cliquepartition, consdata->negcliquepartition, SCIPvarCompActiveAndNegated, consdata->nvars);
6613 /* variables var1 and var2 are opposite: subtract smaller weight from larger weight, reduce capacity,
6620 SCIP_CALL( delCoefPos(scip, cons, v) ); /* this does not affect var2, because var2 stands before var1 */
6630 SCIP_CALL( delCoefPos(scip, cons, v) ); /* this does not affect var2, because var2 stands before var1 */
6641 assert(prev == 0 || ((prev > 0) && (SCIPvarIsActive(consdata->vars[prev - 1]) || SCIPvarGetStatus(consdata->vars[prev - 1]) == SCIP_VARSTATUS_NEGATED)) );
6642 /* either that was the last pair or both, the negated and "normal" variable in front doesn't match var1, so the order is irrelevant */
6643 if( prev == 0 || (var1 != consdata->vars[prev - 1] && var1 != SCIPvarGetNegatedVar(consdata->vars[prev - 1])) )
6673 /** in case the knapsack constraint is independent of every else, solve the knapsack problem (exactly) and apply the
6684 {
6702 /* constraints for which the check flag is set to FALSE, did not contribute to the lock numbers; therefore, we cannot
6703 * use the locks to decide for a dual reduction using this constraint; for example after a restart the cuts which are
6722 /* check if we can apply the dual reduction; this can be done if the knapsack has the only locks on this constraint;
6762 SCIPdebugMessage("the knapsack constraint <%s> is independent to rest of the problem\n", SCIPconsGetName(cons));
6766 SCIP_CALL( SCIPsolveKnapsackExactly(scip, consdata->nvars, consdata->weights, profits, consdata->capacity,
6779 SCIPdebugMessage("variable <%s> only locked up in knapsack constraints: dual presolve <%s>[%.15g,%.15g] >= 1.0\n",
6814 /** check if the knapsack constraint is parallel to objective function; if so update the cutoff bound and avoid that the
6846 /* check if the knapsack constraints has the same number of variables as the objective function and if the initial
6872 /* if a variable has a zero objective coefficient the knapsack constraint is not parallel to objective function */
6911 /* avoid that the knapsack constraint enters the LP since it is parallel to the objective function */
6917 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are
6922 SCIPdebugMessage("constraint <%s> is parallel to objective function and provids a cutoff bound <%g>\n",
6933 /* in case the cutoff bound is worse then currently known one we avoid additionaly enforcement and
6944 /* avoid that the knapsack constraint enters the LP since it is parallel to the objective function */
6950 SCIPdebugMessage("constraint <%s> is parallel to objective function and provids a lower bound <%g>\n",
6960 /** sort the variables and weights w.r.t. the clique partition; thereby ensure the current order of the variables when a
6961 * weight of one variable is greater or equal another weight and both variables are in the same cliques */
6970 )
7044 /* to reach the goal that all variables of each clique will be standing next to each other we will initialize the
7045 * starting pointers for each clique by adding the number of each clique to the last clique starting pointer
7046 * e.g. clique1 has 4 elements and clique2 has 3 elements the the starting pointer for clique1 will be the pointer
7047 * to vars[0], the starting pointer to clique2 will be the pointer to vars[4] and to clique3 it will be
7094 )
7132 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7138 /* we need a merged constraint cause without it the negated clique information could be invalid */
7160 * - minweightsum = sum_{negated cliques C} ( sum(wi : i \in C) - W(C) ), where W(C) is the maximal weight of C
7203 /* for summing up the minimum active weights due to cliques we have to omit the biggest weights of each
7204 * clique, we can only skip this clique if this variables is not fixed to zero, otherwise we have to fix all
7249 /* we found a fixed variable to zero so all other variables in this negated clique have to be fixed to one */
7258 SCIPdebugMessage(" -> fixing variable <%s> to 1, due to negated clique information\n", SCIPvarGetName(myvars[v]));
7259 SCIP_CALL( SCIPinferBinvarCons(scip, myvars[v], TRUE, cons, SCIPvarGetIndex(myvars[i]), &infeasible, &tightened) );
7292 /* reset local minweightsum for clique because all fixed to one variables are now counted in consdata->onesweightsum */
7303 SCIPdebugMessage("knapsack constraint <%s> has minimum weight sum of <%" SCIP_LONGINT_FORMAT ">\n",
7338 SCIPdebugMessage(" -> fixing variable <%s> to 1, due to negated clique information\n", SCIPvarGetName(myvars[i]));
7369 SCIPdebugMessage(" -> cutoff - fixed weight: %" SCIP_LONGINT_FORMAT ", capacity: %" SCIP_LONGINT_FORMAT ", minimum weight sum: %" SCIP_LONGINT_FORMAT " \n",
7376 if( (SCIPgetStage(scip) == SCIP_STAGE_SOLVING || SCIPinProbing(scip)) && SCIPisConflictAnalysisApplicable(scip) )
7378 /* start conflict analysis with the fixed-to-one variables, add only as many as need to exceed the capacity */
7408 /* if the sum of all weights of fixed variables to one plus the minimalweightsum (minimal weight which is already
7409 * used in this knapsack due to negated cliques) plus any weight minus the second largest weight in this cliques
7410 * exceeds the capacity the variables have to be fixed to zero (these variables should only be variables in the
7425 if( consdata->onesweightsum + minweightsum + myweights[cliquestartposs[c]] - secondmaxweights[c] > consdata->capacity )
7434 SCIP_CALL( SCIPinferBinvarCons(scip, var, FALSE, cons, cliquestartposs[c], &infeasible, &tightened) );
7450 /* check, if weights of fixed variables already exceed knapsack capacity, this can only happen if 'usenegatedclique'
7451 * is FALSE, or 'nnegcliques == nvars', otherwise the stronger condition above should have led to a cutoff
7455 SCIPdebugMessage(" -> cutoff - fixed weight: %" SCIP_LONGINT_FORMAT ", capacity: %" SCIP_LONGINT_FORMAT " \n",
7462 if( (SCIPgetStage(scip) == SCIP_STAGE_SOLVING || SCIPinProbing(scip)) && SCIPisConflictAnalysisApplicable(scip) )
7464 /* start conflict analysis with the fixed-to-one variables, add only as many as need to exceed the capacity */
7488 /* if all weights of fixed variables to one plus any weight exceeds the capacity the variables have to be fixed
7499 SCIP_CALL( SCIPinferBinvarCons(scip, consdata->vars[i], FALSE, cons, i, &infeasible, &tightened) );
7513 /* if the remaining (potentially unfixed) variables would fit all into the knapsack, the knapsack is now redundant */
7514 if( !SCIPconsIsModifiable(cons) && consdata->weightsum - zerosweightsum <= consdata->capacity )
7516 SCIPdebugMessage(" -> knapsack constraint <%s> is redundant: weightsum=%" SCIP_LONGINT_FORMAT ", zerosweightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT "\n",
7527 /** all but one variable fit into the knapsack constraint, so we can upgrade this constraint to an logicor constraint
7550 /* if the knapsack constraint consists only of two variables, we can upgrade it to a set-packing constraint */
7553 SCIPdebugMessage("upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
7555 SCIP_CALL( SCIPcreateConsSetpack(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
7561 /* if the knapsack constraint consists of at least three variables, we can upgrade it to a logicor constraint
7568 SCIPdebugMessage("upgrading knapsack constraint <%s> to a logicor constraint", SCIPconsGetName(cons));
7573 SCIP_CALL( SCIPcreateConsLogicor(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consvars,
7594 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 13 => x4, x5 always fits into the knapsack, so we can delete them
7596 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 8 and we have the cliqueinformation (x1,x2,x3) is a clique
7599 * i.e. 5x1 + 5x2 + 5x3 + 1x4 + 1x5 <= 6 and we have the cliqueinformation (x1,x2,x3) is a clique and (x4,x5) too
7606 SCIP_Longint frontsum, /**< sum of front items which fit if we try to take from the first till the last */
7642 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
7659 /* all rear items are redundant, because leaving one item in front and incl. of splitpos out the rear itmes always
7695 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
7703 /* rear items can only be redundant, when the sum is smaller to the weight at splitpos and all rear items would
7704 * always fit into the knapsack, therefor the item directly after splitpos needs to be smaller than the one at
7718 SCIP_CALL( SCIPcalcCliquePartition(scip, &(consdata->vars[splitpos+1]), len, clqpart, &nclq) );
7740 /* all rear items are redundant due to clique information, if maxactduetoclq is smaller than the weight before,
7741 * so delete them and create for all clique the corresponding clique constraints and update the capacity
7751 SCIPdebugMessage("Found redundant variables in constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
7768 /* we found a real clique so extract this constraint, because we do not know who this information generated so */
7774 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), capacity, c);
7826 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
7845 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 13 => x4, x5 always fits into the knapsack, so we can delete them
7847 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 8 and we have the cliqueinformation (x1,x2,x3) is a clique
7850 * i.e. 5x1 + 5x2 + 5x3 + 1x4 + 1x5 <= 6 and we have the cliqueinformation (x1,x2,x3) is a clique and (x4,x5) too
7861 )
7898 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
7913 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
7971 /* if all items fit, then delete the whole constraint but create clique constraints which led to this
7983 SCIPdebugMessage("Found redundant constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
8002 /* we found a real clique so extract this constraint, because we do not know who this information generated so */
8008 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), capacity, c);
8041 /** divides weights by their greatest common divisor and divides capacity by the same value, rounding down the result */
8071 assert(SCIPvarGetUbLocal(consdata->vars[i]) > 0.5); /* all fixed variables should have been removed */
8078 SCIPdebugMessage("knapsack constraint <%s>: dividing weights by %" SCIP_LONGINT_FORMAT "\n", SCIPconsGetName(cons), gcd);
8097 * 1. a) check if all two pairs exceed the capacity, then we can upgrade this constraint to a set-packing constraint
8098 * b) check if all but the smallest weight fit into the knapsack, then we can upgrade this constraint to a logicor
8101 * 2. check if besides big coefficients, that fit only by itself, for a certain amount of variables all combination of
8104 * +219y1 + 180y2 + 74x1 + 70x2 + 63x3 + 62x4 + 53x5 <= 219 <=> 3y1 + 3y2 + x1 + x2 + x3 + x4 + x5 <= 3
8106 * 3. use the duality between a^Tx <= capacity <=> a^T~x >= weightsum - capacity to tighten weights, e.g.
8122 )
8170 SCIPdebugMessage("upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
8172 SCIP_CALL( SCIPcreateConsSetpack(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
8188 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8197 /* early termination, if the pair with biggest coeffcients together does not exceed the dualcapacity */
8208 * the following is done without looking at the dualcapacity; it is enough to check whether for a certain amount of
8215 * +219y1 + 180y_2 +74x1 + 70x2 + 63x3 + 62x4 + 53x5 <= 219 <=> 3y1 + 3y2 + x1 + x2 + x3 + x4 + x5 <= 3
8267 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8277 /* a certain amount of small variables exceed the capacity, so check if this holds for all combinations of the
8293 /* if the same amount but with the smallest possible weights also exceed the capacity, it holds for all
8325 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8338 /* if the follwoing assert fails we have either a redundant constraint or a set-packing constraint, this should
8347 * either choose x1, or all other variables (weightsum of x2 to x10 is 979 above), so we can tighten this
8388 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8441 /* we have a dual-knapsack constraint were we either need to choose one variable out of a subset (big
8448 * 3x1 + 3x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 <= 12 <=> 3~x1 + 3~x2 + 2~x3 + 2~x4 + 2~x5 + 2~x6 + ~x7 >= 3
8514 * e.g. 9x1 + 9x2 + 6x3 + 4x4 + 4x5 + 4x6 <= 27 <=> 9~x1 + 9~x2 + 6~x3 + 4~x4 + 4~x5 + 4~x6 >= 9
8541 /* we found redundant variables, which does not influence the feasibility of any integral solution, e.g.
8560 /* for performance reasons we do not update the capacity(, i.e. reduce it by reductionsum) and directly
8571 * e.g. 9x1 + 9x2 + 6x3 + 6x4 + 4x5 + 4x6 <= 29 <=> 9~x1 + 9~x2 + 6~x3 + 6~x4 + 4~x5 + 4~x6 >= 9
8576 if( weights[v] > 1 || (weights[startv] > (SCIP_Longint)nvars - v) || (startv > 0 && weights[0] == (SCIP_Longint)nvars - v + 1) )
8590 /* adjust middle sized coefficients, which when choosing also one small coefficients exceed the
8621 newcap = ((SCIP_Longint)startv - 1) * newweight + ((SCIP_Longint)v - startv) * (newweight - 1) + ((SCIP_Longint)nvars - v);
8630 assert(weights[v] == 1 && (weights[startv] == (SCIP_Longint)nvars - v) && (startv == 0 || weights[0] == (SCIP_Longint)nvars - v + 1));
8635 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8645 /* check if all rear items have the same weight as the last one, so we cannot tighten the constraint further */
8693 /* dualcapacity is odd, we can set the middle weights to dualcapacity but therefor need to multiply all
8737 /* @todo loop for "k" can be extended, same coefficient when determine next sumcoef can be left out */
8767 sumcoef = MIN(weights[nvars - 1] + weights[nvars - 5], weights[nvars - 2] + weights[nvars - 3]);
8771 sumcoef = MIN(weights[nvars - 1] + weights[nvars - 4], weights[nvars - 1] + weights[nvars - 2] + weights[nvars - 3]);
8778 /* tighten next coefficients that, pair with the current small coefficient, exceed the dualcapacity */
8786 /* @todo check for further reductions, when two times the minweight exceeds the dualcapacity */
8818 /* now check if a combination of small coefficients allows us to tighten big coefficients further */
8882 /* dualcapacity is odd, we can set the middle weights to dualcapacity but therefor need to multiply all
8941 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8966 /** fixes variables with weights bigger than the capacity and delete redundant constraints, also sort weights */
8975 {
9065 * 1. use the duality between a^Tx <= capacity <=> -a^T~x <= capacity - weightsum to tighten weights, e.g.
9073 * 2. if variables in a constraint do not affect the (in-)feasibility of the constraint, we can delte them, e.g.
9077 * 3. Tries to use gcd information an all but one weight to change this not-included weight and normalize the
9080 * 9x1 + 6x2 + 6x3 + 5x4 <= 13 => 9x1 + 6x2 + 6x3 + 6x4 <= 12 => 3x1 + 2x2 + 2x3 + 2x4 <= 4 => 4x1 + 2x2 + 2x3 + 2x4 <= 4
9187 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal weight
9210 /* determine coefficients as big as the capacity, these we do not need to take into account when calculating the
9229 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
9250 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
9261 /* if both first coefficients have a gcd of 1, both are candidates for the coefficient change */
9292 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
9332 SCIPdebugMessage("gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restweight = %" SCIP_LONGINT_FORMAT "; possible new weight of variable <%s> %" SCIP_LONGINT_FORMAT ", possible new capacity %" SCIP_LONGINT_FORMAT ", offset of coefficients as big as capacity %d\n", gcd, rest, restweight, SCIPvarGetName(vars[candpos]), newweight, consdata->capacity - rest, offsetv);
9334 /* must not change weights and capacity if one variable would be removed and we have a big coefficient,
9335 * e.g., 11x1 + 6x2 + 6x3 + 5x4 <= 11 => gcd = 6, offsetv = 1 => newweight = 0, but we would lose x1 = 1 => x4 = 0
9384 SCIPdebugMessage("we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
9391 /** deletes all fixed variables from knapsack constraint, and replaces variables with binary representatives */
9400 {
9478 /* @todo maybe resolve the problem that the eliminating of the multi-aggregation leads to a non-knapsack
9479 * constraint (converting into a linear constraint), for example the multi-aggregation consist of a non-binary
9480 * variable or due to resolving now their are non-integral coefficients or a non-integral capacity
9488 * 1b) If repvar is a negated variable of a multi-aggregated variable weight * repvar should be replaced by
9489 * weight - weight * (a_1*y_1 + ... + a_n*y_n + c), for better further use here we switch the sign of weight
9492 * 2a) weight * a_i < 0 than we add -weight * a_i * y_i_neg to the constraint and adjust the capacity through
9496 * 3b) If repvar was negated we need to subtract weight * (c - 1) from capacity(note we switched the sign of
9516 SCIPerrorMessage("try to resolve a multi-aggregation with a non-integral value for weight*aggrconst = %g\n", weight*aggrconst);
9531 SCIPerrorMessage("try to resolve a multi-aggregation with a non-binary variable <%s>\n", aggrvars[i]);
9536 SCIPerrorMessage("try to resolve a multi-aggregation with a non-integral value for weight*aggrscalars = %g\n", weight*aggrscalars[i]);
9539 /* if the new coefficient is smaller than zero, we need to add the negated variable instead and adjust the capacity */
9544 SCIP_CALL( addCoef(scip, cons, negvar, (SCIP_Longint)(SCIPfloor(scip, -weight * aggrscalars[i] + 0.5))) );
9549 SCIP_CALL( addCoef(scip, cons, aggrvars[i], (SCIP_Longint)(SCIPfloor(scip, weight * aggrscalars[i] + 0.5))) );
9555 /* adjust the capacity with the aggregation constant and if necessary the extra weight through the negation */
9588 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have to
9642 /* we explicitly construct the complete implication graph where the knapsack variables are involved;
9647 SCIPdebugMessage("memory limit of %d bytes reached in knapsack preprocessing - abort collecting zero items\n",
9678 /** applies rule (3) of the weight tightening procedure, which can lift other variables into the knapsack:
9683 * - the weight of the variable or its negation (depending on v) can be increased as long as it has the same
9700 int* firstidxs[2]; /* first index in zeroitems for each binary variable/value pair, or zero for empty list */
9703 int* nextidxs; /* next index in zeroitems for the same binary variable, or zero for end of list */
9746 if( (!consdata->cliquepartitioned && nvars > MAX_USECLIQUES_SIZE) || consdata->ncliques > MAX_USECLIQUES_SIZE )
9755 /* we have to consider all integral variables since even integer and implicit integer variables can have binary bounds */
9776 /* next if conditions should normally not be true, because it means that presolving has created more binary variables
9777 * than binary + integer variables existed at the presolving initialization method, but for example if you would
9788 BMSclearMemoryArray(&(conshdlrdata->ints1[oldsize]), conshdlrdata->ints1size - oldsize); /*lint !e866*/
9798 BMSclearMemoryArray(&(conshdlrdata->ints2[oldsize]), conshdlrdata->ints2size - oldsize); /*lint !e866*/
9807 SCIP_CALL( SCIPreallocMemoryArray(scip, &conshdlrdata->longints1, conshdlrdata->longints1size) );
9808 BMSclearMemoryArray(&(conshdlrdata->longints1[oldsize]), conshdlrdata->longints1size - oldsize); /*lint !e866*/
9817 SCIP_CALL( SCIPreallocMemoryArray(scip, &conshdlrdata->longints2, conshdlrdata->longints2size) );
9818 BMSclearMemoryArray(&(conshdlrdata->longints2[oldsize]), conshdlrdata->longints2size - oldsize); /*lint !e866*/
9849 /* next if conditions should normally not be true, because it means that presolving has created more binary variables
9850 * than binary + integer variables existed at the presolving initialization method, but for example if you would
9861 BMSclearMemoryArray(&(conshdlrdata->bools1[oldsize]), conshdlrdata->bools1size - oldsize); /*lint !e866*/
9871 BMSclearMemoryArray(&(conshdlrdata->bools2[oldsize]), conshdlrdata->bools2size - oldsize); /*lint !e866*/
10014 /* calculate the clique partition and the maximal sum of weights using the clique information */
10020 /* next if condition should normally not be true, because it means that presolving has created more binary variables
10021 * in one constraint than binary + integer variables existed in the whole problem at the presolving initialization
10022 * method, but for example if you would transform all integers into their binary representation then it maybe happens
10032 BMSclearMemoryArray(&(conshdlrdata->bools3[oldsize]), conshdlrdata->bools3size - oldsize); /*lint !e866*/
10066 /* next if condition should normally not be true, because it means that presolving has created more binary variables
10067 * in one constraint than binary + integer variables existed in the whole problem at the presolving initialization
10068 * method, but for example if you would transform all integers into their binary representation then it maybe happens
10078 BMSclearMemoryArray(&conshdlrdata->bools4[oldsize], conshdlrdata->bools4size - oldsize); /*lint !e866*/
10089 /* for each binary variable xi and each fixing v, calculate the cliqueweightsum and update the weight of the
10090 * variable in the knapsack (this is sequence-dependent because the new or modified weights have to be
10116 /* mark the items that are implied to zero by setting the current variable to the current value */
10164 SCIPdebugMessage("knapsack constraint <%s>: adding lifted item %" SCIP_LONGINT_FORMAT "<%s>\n",
10207 /* if new items were added, multiple entries of the same variable are possible and we have to clean up the constraint */
10227 * - wi and capacity can be changed to have the same redundancy effect and the same results for
10228 * fixing xi to zero or one, but with a reduced wi and tightened capacity to tighten the LP relaxation
10232 * (2) increase weights from front to back(sortation is necessary) if there is no space left for another weight
10233 * - determine the four(can be adjusted) minimal weightsums of the knapsack, i.e. in increasing order
10234 * weights[nvars - 1], weights[nvars - 2], MIN(weights[nvars - 3], weights[nvars - 1] + weights[nvars - 2]),
10235 * MIN(MAX(weights[nvars - 3], weights[nvars - 1] + weights[nvars - 2]), weights[nvars - 4]), note that there
10237 * - check if summing up a minimal weightsum with a big weight exceeds the capacity, then we can increase the big
10248 * - weights wi, i in C, and capacity can be changed to have the same redundancy effect and the same results for
10249 * fixing xi, i in C, to zero or one, but with a reduced wi and tightened capacity to tighten the LP relaxation
10254 * This rule has to add the used cliques in order to ensure they are enforced - otherwise, the reduction might
10260 * - the weight of the variable or its negation (depending on v) can be increased as long as it has the same
10307 assert(consdata->weightsum > consdata->capacity); /* otherwise, the constraint is redundant */
10337 SCIPdebugMessage("knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT ", capacity from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10368 /* @todo loop for "k" can be extended, same coefficient when determine next sumcoef can be left out */
10425 /* tighten next coefficients that, paired with the current small coefficient, exceed the capacity */
10432 SCIPdebugMessage("in constraint <%s> changing weight %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10465 SCIPdebugMessage("in constraint <%s> changing weight %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10478 /* apply rule (2) (don't apply, if the knapsack has too many items for applying this costly method) */
10481 if( conshdlrdata->disaggregation && consdata->nvars - pos <= MAX_USECLIQUES_SIZE && consdata->nvars >= 2 &&
10483 consdata->weights[pos - 1] == consdata->capacity && (pos == consdata->nvars || consdata->weights[pos] == 1) )
10499 SCIPdebugMessage("upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
10501 SCIP_CALL( SCIPcreateConsSetpack(scip, &cliquecons, SCIPconsGetName(cons), pos, consdata->vars,
10533 SCIPdebugMessage("Disaggregating knapsack constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
10559 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), consdata->capacity, c);
10581 else if( consdata->nvars <= MAX_USECLIQUES_SIZE || (consdata->cliquepartitioned && consdata->ncliques <= MAX_USECLIQUES_SIZE) )
10653 SCIPdebugMessage("knapsack constraint <%s>: weights of clique %d (maxweight: %" SCIP_LONGINT_FORMAT ") can be tightened: cliqueweightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT " -> delta: %" SCIP_LONGINT_FORMAT "\n",
10683 /* check if our clique information results out of this knapsack constraint and if so check if we would loose the clique information */
10710 SCIPdebugMessage(" -> change capacity from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT " (forceclique:%u)\n",
10722 SCIPdebugMessage(" -> change weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10729 /* if before the weight update at least one pair of weights did not fit into the knapsack and now fits,
10730 * we have to make sure, the clique is enforced - the clique might have been constructed partially from
10731 * this constraint, and by reducing the weights, this clique information is not contained anymore in the
10744 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), consdata->capacity, i);
10804 SCIPdebugMessage("knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10807 consdataChgWeight(consdata, i, consdata->capacity); /* this does not destroy the weight order! */
10827 SCIPdebugMessage("knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10828 SCIPconsGetName(cons), SCIPvarGetName(consdata->vars[consdata->nvars-1]), weight, consdata->capacity);
10830 consdataChgWeight(consdata, consdata->nvars-1, consdata->capacity); /* this does not destroy the weight order! */
10917 /* determine maximal weights for all negated cliques and calculate minimal weightsum due to negated cliques */
10920 assert(0 <= consdata->negcliquepartition[v] && consdata->negcliquepartition[v] <= nnegcliques);
10937 /* free capacity is the rest of not used capacity if the smallest amount of weights due to negated cliques are used */
10941 SCIPdebugMessage("Try to add negated cliques in knapsack constraint handler for constraint %s; capacity = %" SCIP_LONGINT_FORMAT ", minactivity(due to neg. cliques) = %" SCIP_LONGINT_FORMAT ", freecapacity = %" SCIP_LONGINT_FORMAT ".\n",
10952 /* if we would take the biggest weight instead of another what would we gain, take weight[i] instead of
10958 gainweights[nposcliquevars] = maxweights[consdata->negcliquepartition[v]] - consdata->weights[w];
10970 SCIPsortDownLongPtrInt(gainweights,(void**) poscliquevars, gaincliquepartition, nposcliquevars);
10983 /* taking bigger weights make the knapsack redundant so we will create cliques, only take items which are not
10985 for( w = v + 1; w < nposcliquevars && !cliqueused[gaincliquepartition[w]] && gainweights[w] + lastweight > freecapacity; ++w )
11015 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11016 for( ++w; w < nposcliquevars && !cliqueused[gaincliquepartition[w]] && beforelastweight + gainweights[w] > freecapacity; ++w )
11116 /* calculate minimal activity due to negated cliques, and determine second maximal weight in each clique */
11145 /* free capacity is the rest of not used capacity if the smallest amount of weights due to negated cliques are used */
11149 SCIPdebugMessage("Try to add cliques in knapsack constraint handler for constraint %s; capacity = %" SCIP_LONGINT_FORMAT ", minactivity(due to neg. cliques) = %" SCIP_LONGINT_FORMAT ", freecapacity = %" SCIP_LONGINT_FORMAT ".\n",
11152 /* create negated cliques out of negated cliques, if we do not take the smallest weight of a cliques ... */
11205 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11228 for( i = 1; i < nvars && consdata->weights[i-1] + consdata->weights[i] > consdata->capacity; ++i )
11250 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11252 for( i = ncliquevars; i < nvars && cliqueminweight + consdata->weights[i] > consdata->capacity; ++i )
11290 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
11372 hashval = (consdata->nvars << 29) + (minidx << 22) + (mididx << 11) + maxidx + maxabsval; /*lint !e701*/
11377 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
11388 )
11446 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
11477 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11512 {
11537 for( c = (consdata0->presolvedtiming == SCIP_PRESOLTIMING_EXHAUSTIVE ? firstchange : 0); c < chkind; ++c )
11557 if( consdata0->presolvedtiming >= SCIP_PRESOLTIMING_EXHAUSTIVE && consdata1->presolvedtiming >= SCIP_PRESOLTIMING_EXHAUSTIVE ) /*lint !e574*/
11587 SCIPdebugMessage("preprocess knapsack constraint pair <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
11624 /* if cons1 is possible contained in cons0 (consdata0->weights[v0] / quotient) must be greater equals consdata1->weights[v1] */
11625 if( iscons1incons0contained && SCIPisLT(scip, ((SCIP_Real) consdata0->weights[v0]) / quotient, (SCIP_Real) consdata1->weights[v1]) )
11631 /* if cons0 is possible contained in cons1 (consdata0->weight[v0] / quotient) must be less equals consdata1->weight[v1] */
11632 else if( iscons0incons1contained && SCIPisGT(scip, ((SCIP_Real) consdata0->weights[v0]) / quotient, (SCIP_Real) consdata1->weights[v1]) )
11660 /* neither one constraint was contained in another or we checked all variables of one constraint against the
11670 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11681 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11726 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
11728 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
11748 /* if the right hand side is non-infinite, we have to negate all variables with negative coefficient;
11749 * otherwise, we have to negate all variables with positive coefficient and multiply the row with -1
11783 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
11811 SCIPdebugMessage("upgrading constraint <%s> to knapsack constraint\n", SCIPconsGetName(cons));
11813 /* create the knapsack constraint (an automatically upgraded constraint is always unmodifiable) */
11815 SCIP_CALL( createNormalizedKnapsack(scip, upgdcons, SCIPconsGetName(cons), nvars, vars, vals, lhs, rhs,
11846 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
11877 /* all variables which are of integral type can be binary; this can be checked via the method SCIPvarIsBinary(var) */
11887 /** deinitialization method of constraint handler (called before transformed problem is freed) */
11906 /** presolving initialization method of constraint handler (called when presolving is about to begin) */
11920 /* all variables which are of integral type can be binary; this can be checked via the method SCIPvarIsBinary(var) */
11954 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
11968 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
11998 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
12070 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
12071 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
12074 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
12079 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
12129 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
12157 SCIP_CALL( separateCons(scip, conss[i], NULL, sepacardinality, conshdlrdata->usegubs, &cutoff, &ncuts) );
12198 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
12218 SCIP_CALL( separateCons(scip, conss[i], sol, sepacardinality, conshdlrdata->usegubs, &cutoff, &ncuts) );
12249 maxncuts = (SCIPgetDepth(scip) == 0 ? conshdlrdata->maxsepacutsroot : conshdlrdata->maxsepacuts);
12348 /* do not propagate constraints with multi-aggregated variables, which should only happen in probing mode,
12358 SCIP_CALL( propagateCons(scip, conss[i], &cutoff, &redundant, &nfixedvars, conshdlrdata->negatedclique) );
12448 SCIP_CALL( propagateCons(scip, cons, &cutoff, &redundant, nfixedvars, (presoltiming & SCIP_PRESOLTIMING_MEDIUM)) );
12469 /* check again for redundancy (applyFixings() might have decreased weightsum due to fixed-to-zero vars) */
12472 SCIPdebugMessage(" -> knapsack constraint <%s> is redundant: weightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT "\n",
12484 SCIP_CALL( simplifyInequalities(scip, cons, nfixedvars, ndelconss, nchgcoefs, nchgsides, naddconss, &cutoff) );
12501 SCIP_CALL( tightenWeights(scip, cons, presoltiming, nchgcoefs, nchgsides, naddconss, ndelconss, &cutoff) );
12507 if( conshdlrdata->dualpresolving && SCIPallowDualReds(scip) && (presoltiming & SCIP_PRESOLTIMING_MEDIUM) != 0 )
12509 /* in case the knapsack constraints is independent of everything else, solve the knapsack and apply the
12527 if( !cutoff && conshdlrdata->presolusehashing && (presoltiming & SCIP_PRESOLTIMING_MEDIUM) != 0 )
12529 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
12530 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &cutoff, ndelconss) );
12533 if( (*ndelconss != oldndelconss) || (*nchgsides != oldnchgsides) || (*nchgcoefs != oldnchgcoefs) || (*naddconss != oldnaddconss) )
12538 if( !cutoff && firstchange < nconss && conshdlrdata->presolpairwise && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 )
12553 npaircomparisons += ((SCIPconsGetData(cons)->presolvedtiming < SCIP_PRESOLTIMING_EXHAUSTIVE) ? (SCIP_Longint) c : ((SCIP_Longint) c - (SCIP_Longint) firstchange));
12559 if( (*ndelconss != oldndelconss) || (*nchgsides != oldnchgsides) || (*nchgcoefs != oldnchgcoefs) )
12561 if( ((SCIP_Real) (*ndelconss - oldndelconss) + ((SCIP_Real) (*nchgsides - oldnchgsides))/2.0 +
12562 ((SCIP_Real) (*nchgcoefs - oldnchgcoefs))/10.0) / ((SCIP_Real) npaircomparisons) < MINGAINPERNMINCOMPARISONS )
12611 /* according to negated cliques the minweightsum and all variables which are fixed to one which led to a fixing of
12612 * another negated clique variable to one, the inferinfo was chosen to be the negative of the position in the
12619 /* locate the inference variable and calculate the capacity that has to be used up to conclude infervar == 0;
12620 * inferinfo stores the position of the inference variable (but maybe the variables were resorted)
12633 /* add fixed-to-one variables up to the point, that their weight plus the weight of the conflict variable exceeds
12651 /* NOTE: It might be the case that capsum < consdata->capacity. This is due the fact that the fixing of the variable
12652 * to zero can included negated clique information. A negated clique means, that at most one of the clique
12653 * variables can be zero. These information can be used to compute a minimum activity of the constraint and
12656 * Even if capsum < consdata->capacity we still reported a complete reason since the minimum activity is based
12657 * on global variable bounds. It might even be the case that we reported to many variables which are fixed to
12693 {
12753 -SCIPinfinity(scip), (SCIP_Real) SCIPgetCapacityKnapsack(sourcescip, sourcecons), varmap, consmap,
12754 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
12833 SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "expected '<= ' at begin of '%s'\n", str);
12846 SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "error parsing capacity from '%s'\n", str);
12852 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
12884 /** constraint method of constraint handler which returns the number of variables (if possible) */
12893 (*nvars) = consdata->nvars;
12939 case SCIP_EVENTTYPE_VARFIXED: /* the variable should be removed from the constraint in presolving */
12949 case SCIP_EVENTTYPE_IMPLADDED: /* further preprocessing might be possible due to additional implications */
12983 SCIP_CALL( SCIPincludeEventhdlrBasic(scip, &(conshdlrdata->eventhdlr), EVENTHDLR_NAME, EVENTHDLR_DESC,
13015 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolKnapsack,CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
13017 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropKnapsack, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
13020 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpKnapsack, consSepasolKnapsack, CONSHDLR_SEPAFREQ,
13026 /* include the linear constraint to knapsack constraint upgrade in the linear constraint handler */
13027 SCIP_CALL( SCIPincludeLinconsUpgrade(scip, linconsUpgdKnapsack, LINCONSUPGD_PRIORITY, CONSHDLR_NAME) );
13033 "multiplier on separation frequency, how often knapsack cuts are separated (-1: never, 0: only at root)",
13037 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cuts",
13085 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
13089 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
13097 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
13125 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
13127 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
13150 SCIP_CALL( consdataCreate(scip, &consdata, conshdlrdata->eventhdlr, nvars, vars, weights, capacity) );
13153 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
13160 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
13161 * method SCIPcreateConsKnapsack(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
13165 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
13280 /** gets the array of variables in the knapsack constraint; the user must not modify this array! */
13301 /** gets the array of weights in the knapsack constraint; the user must not modify this array! */
13370 /** returns the linear relaxation of the given knapsack constraint; may return NULL if no LP row was yet created;
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed) Definition: scip.c:22764 void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len) void SCIPsortPtrInt(void **ptrarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len) SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var) Definition: var.c:16759 SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type) Definition: scip.c:15939 Definition: cons_knapsack.c:226 static SCIP_RETCODE GUBsetFree(SCIP *scip, SCIP_GUBSET **gubset) Definition: cons_knapsack.c:1972 Definition: type_result.h:33 SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name) Definition: scip.c:5847 static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss) Definition: cons_knapsack.c:6499 Definition: type_result.h:37 static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff) Definition: cons_knapsack.c:6541 SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans))) Definition: scip.c:5557 static SCIP_RETCODE getCover(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool *found, SCIP_Bool modtransused, int *ntightened, SCIP_Bool *fractional) Definition: cons_knapsack.c:2347 static SCIP_RETCODE GUBsetCalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques, SCIP_Real *solvals) Definition: cons_knapsack.c:2091 SCIP_Real SCIPgetDualfarkasKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13354 static SCIP_DECL_CONSRESPROP(consRespropKnapsack) Definition: cons_knapsack.c:12591 Definition: struct_scip.h:53 static SCIP_RETCODE GUBsetMoveVar(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, int var, int oldgubcons, int newgubcons) Definition: cons_knapsack.c:1791 static SCIP_RETCODE addNegatedCliques(SCIP *const scip, SCIP_CONS *const cons, SCIP_Bool *const cutoff, int *const nbdchgs) Definition: cons_knapsack.c:10850 SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element) Definition: misc.c:1562 static SCIP_DECL_HASHKEYVAL(hashKeyValKnapsackcons) Definition: cons_knapsack.c:11344 void SCIPsortDownLongPtrPtrIntInt(SCIP_Longint *longarray, void **ptrarray1, void **ptrarray2, int *intarray1, int *intarray2, int len) static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool sepacuts, SCIP_Bool usegubs, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:6155 SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2) Definition: scip.c:41528 SCIP_CLIQUE ** SCIPvarGetCliques(SCIP_VAR *var, SCIP_Bool varfixing) Definition: var.c:17318 SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop))) Definition: scip.c:5603 SCIP_Bool SCIPisEfficacious(SCIP *scip, SCIP_Real efficacy) Definition: scip.c:30487 SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa) Definition: scip.c:5215 Definition: type_result.h:49 static SCIP_RETCODE getLiftingSequenceGUB(SCIP *scip, SCIP_GUBSET *gubset, SCIP_Real *solvals, SCIP_Longint *weights, int *varsC1, int *varsC2, int *varsF, int *varsR, int nvarsC1, int nvarsC2, int nvarsF, int nvarsR, int *gubconsGC1, int *gubconsGC2, int *gubconsGFC1, int *gubconsGR, int *ngubconsGC1, int *ngubconsGC2, int *ngubconsGFC1, int *ngubconsGR, int *ngubconscapexceed, int *maxgubvarssize) Definition: cons_knapsack.c:2885 Definition: type_set.h:35 static SCIP_RETCODE separateSequLiftedMinimalCoverInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *mincovervars, int *nonmincovervars, int nmincovervars, int nnonmincovervars, SCIP_SOL *sol, SCIP_GUBSET *gubset, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:4767 SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy))) Definition: scip.c:5303 SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound) Definition: scip.c:38171 SCIP_Bool SCIPisCutEfficacious(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut) Definition: scip.c:30469 SCIP_Longint SCIPgetCapacityKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13214 static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Longint weight) Definition: cons_knapsack.c:6197 static SCIP_DECL_CONSINITLP(consInitlpKnapsack) Definition: cons_knapsack.c:12088 SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:5737 Definition: struct_var.h:196 SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound) Definition: scip.c:12339 SCIP_RETCODE SCIPgetNegatedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **negvars) Definition: scip.c:17279 SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip) Definition: scip.c:24307 static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata) Definition: cons_knapsack.c:6825 static SCIP_RETCODE separateSupLiftedMinimalCoverInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *mincovervars, int *nonmincovervars, int nmincovervars, int nnonmincovervars, SCIP_Longint mincoverweight, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:5168 static SCIP_RETCODE dualWeightsTightening(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss) Definition: cons_knapsack.c:8122 static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata, SCIP_EVENTHDLR *eventhdlr) Definition: cons_knapsack.c:698 SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars))) Definition: scip.c:5787 static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, SCIP_Bool *redundant, int *nfixedvars, SCIP_Bool usenegatedclique) Definition: cons_knapsack.c:7094 SCIP_RETCODE SCIPcreateConsSetpack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode) Definition: cons_setppc.c:8952 Definition: cons_knapsack.c:236 Definition: cons_knapsack.c:228 SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata) Definition: scip.c:7747 Definition: cons_knapsack.c:245 static SCIP_RETCODE insertZerolist(SCIP *scip, int **liftcands, int *nliftcands, int **firstidxs, SCIP_Longint **zeroweightsums, int **zeroitems, int **nextidxs, int *zeroitemssize, int *nzeroitems, int probindex, SCIP_Bool value, int knapsackidx, SCIP_Longint knapsackweight, SCIP_Bool *memlimitreached) Definition: cons_knapsack.c:9610 static SCIP_RETCODE separateSequLiftedExtendedWeightInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *feassetvars, int *nonfeassetvars, int nfeassetvars, int nnonfeassetvars, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:5001 SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse))) Definition: scip.c:5764 static void consdataChgWeight(SCIP_CONSDATA *consdata, int item, SCIP_Longint newweight) Definition: cons_knapsack.c:748 SCIP_Longint * SCIPgetWeightsKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13309 static void getPartitionNoncovervars(SCIP *scip, SCIP_Real *solvals, int *noncovervars, int nnoncovervars, int *varsF, int *varsR, int *nvarsF, int *nvarsR) Definition: cons_knapsack.c:2751 SCIP_RETCODE SCIPseparateKnapsackCuts(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_SOL *sol, SCIP_Bool usegubs, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:5524 SCIP_Real SCIPvarGetLbAtIndex(SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after) Definition: var.c:15695 SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var) Definition: scip.c:34593 Definition: type_result.h:40 SCIP_RETCODE SCIPcreateConsBasicKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity) Definition: cons_knapsack.c:13174 void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len) Definition: struct_sepa.h:36 SCIP_RETCODE SCIPincludeConshdlrKnapsack(SCIP *scip) Definition: cons_knapsack.c:12976 SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate) Definition: scip.c:25134 SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file) Definition: scip.c:26224 SCIP_RETCODE SCIPaddCut(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut, SCIP_Bool forcecut, SCIP_Bool *infeasible) Definition: scip.c:30577 Constraint handler for the set partitioning / packing / covering constraints . SCIP_VAR ** SCIPgetVarsKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13288 SCIP_Real SCIPgetDualsolKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13330 SCIP_RETCODE SCIPsolveKnapsackApproximately(SCIP *scip, int nitems, SCIP_Longint *weights, SCIP_Real *profits, SCIP_Longint capacity, int *items, int *solitems, int *nonsolitems, int *nsolitems, int *nnonsolitems, SCIP_Real *solval) Definition: cons_knapsack.c:1492 static SCIP_RETCODE GUBsetGetCliquePartition(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, SCIP_Real *solvals) Definition: cons_knapsack.c:2250 SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree))) Definition: scip.c:5328 SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr) Definition: misc.c:1475 Definition: cons_knapsack.c:235 SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success) Definition: scip.c:24707 static SCIP_DECL_CONSDELETE(consDeleteKnapsack) Definition: cons_knapsack.c:12031 Definition: struct_sol.h:50 SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit))) Definition: scip.c:5352 SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata) Definition: scip.c:3516 SCIP_RETCODE SCIPcreateEmptyRowUnspec(SCIP *scip, SCIP_ROW **row, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable) Definition: scip.c:27645 Definition: cons_knapsack.c:255 SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata) Definition: scip.c:3542 SCIP_RETCODE SCIPparseVarName(SCIP *scip, const char *str, SCIP_VAR **var, char **endptr) Definition: scip.c:16242 static SCIP_RETCODE GUBconsFree(SCIP *scip, SCIP_GUBCONS **gubcons) Definition: cons_knapsack.c:1699 static SCIP_DECL_HASHGETKEY(hashGetKeyKnapsackcons) Definition: cons_knapsack.c:11291 static SCIP_RETCODE GUBconsDelVar(SCIP *scip, SCIP_GUBCONS *gubcons, int var, int gubvarsidx) Definition: cons_knapsack.c:1754 SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr) Definition: cons.c:3921 static SCIP_RETCODE stableSort(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR **vars, SCIP_Longint *weights, int *cliquestartposs, SCIP_Bool usenegatedclique) Definition: cons_knapsack.c:6970 SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos) Definition: scip.c:36232 static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool printreason, SCIP_Bool *violated) Definition: cons_knapsack.c:849 SCIP_RETCODE SCIPgetBinvarRepresentative(SCIP *scip, SCIP_VAR *var, SCIP_VAR **repvar, SCIP_Bool *negated) Definition: scip.c:17316 static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff) Definition: cons_knapsack.c:9400 SCIP_RETCODE SCIPcreateConsKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode) Definition: cons_knapsack.c:13106 Constraint handler for knapsack constraints of the form , x binary and . SCIP_RETCODE SCIPvarsGetProbvarBinary(SCIP_VAR ***vars, SCIP_Bool **negatedarr, int nvars) Definition: var.c:11541 void SCIPsortDownPtrInt(void **ptrarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len) static SCIP_DECL_HASHKEYEQ(hashKeyEqKnapsackcons) Definition: cons_knapsack.c:11301 static SCIP_DECL_CONSEXITSOL(consExitsolKnapsack) Definition: cons_knapsack.c:12007 static void getPartitionCovervars(SCIP *scip, SCIP_Real *solvals, int *covervars, int ncovervars, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2) Definition: cons_knapsack.c:2621 Definition: type_result.h:35 static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss, SCIP_Bool *cutoff) Definition: cons_knapsack.c:9092 Definition: struct_cons.h:36 SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup) Definition: scip.c:19592 void SCIPsortIntInt(int *intarray1, int *intarray2, int len) SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1) Definition: scip.c:25287 Definition: struct_cons.h:116 static SCIP_DECL_CONSDELVARS(consDelvarsKnapsack) Definition: cons_knapsack.c:12693 static void GUBsetSwapVars(SCIP *scip, SCIP_GUBSET *gubset, int var1, int var2) Definition: cons_knapsack.c:1882 Constraint handler for logicor constraints (equivalent to set covering, but algorithms are suited fo... SCIP_Real SCIPvarGetUbAtIndex(SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after) Definition: var.c:15787 static SCIP_RETCODE sequentialUpAndDownLiftingGUB(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, int ngubconscapexceed, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *gubconsGC1, int *gubconsGC2, int *gubconsGFC1, int *gubconsGR, int ngubconsGC1, int ngubconsGC2, int ngubconsGFC1, int ngubconsGR, int alpha0, int *liftcoefs, SCIP_Real *cutact, int *liftrhs, int maxgubvarssize) Definition: cons_knapsack.c:3904 static SCIP_DECL_CONSINITPRE(consInitpreKnapsack) Definition: cons_knapsack.c:11915 SCIP_RETCODE SCIPgetNegatedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **negvar) Definition: scip.c:17246 SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming) Definition: scip.c:5496 Definition: cons_knapsack.c:223 Definition: type_result.h:36 SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2) Definition: scip.c:41515 SCIP_RETCODE SCIPinferBinvarCons(SCIP *scip, SCIP_VAR *var, SCIP_Bool fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool *infeasible, SCIP_Bool *tightened) Definition: scip.c:20735 SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre))) Definition: scip.c:5472 #define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum) Definition: scip.h:20391 static SCIP_Longint safeAddMinweightsGUB(SCIP_Longint val1, SCIP_Longint val2) Definition: cons_knapsack.c:3833 SCIP_RETCODE SCIPvarGetProbvarBinary(SCIP_VAR **var, SCIP_Bool *negated) Definition: var.c:11573 Definition: type_set.h:41 Definition: type_retcode.h:33 SCIP_RETCODE SCIPgetSolVals(SCIP *scip, SCIP_SOL *sol, int nvars, SCIP_VAR **vars, SCIP_Real *vals) Definition: scip.c:34630 SCIP_RETCODE SCIPsolveKnapsackExactly(SCIP *scip, int nitems, SCIP_Longint *weights, SCIP_Real *profits, SCIP_Longint capacity, int *items, int *solitems, int *nonsolitems, int *nsolitems, int *nnonsolitems, SCIP_Real *solval, SCIP_Bool *success) Definition: cons_knapsack.c:949 SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming) Definition: scip.c:5261 SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata) Definition: scip.c:5161 SCIP_Bool SCIPvarsHaveCommonClique(SCIP_VAR *var1, SCIP_Bool value1, SCIP_VAR *var2, SCIP_Bool value2, SCIP_Bool regardimplics) Definition: var.c:10742 static SCIP_DECL_CONSENFOPS(consEnfopsKnapsack) Definition: cons_knapsack.c:12293 SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element) Definition: misc.c:1714 Definition: type_result.h:42 static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool *cutoff) Definition: cons_knapsack.c:814 SCIP_RETCODE SCIPcreateEmptyRowSepa(SCIP *scip, SCIP_ROW **row, SCIP_SEPA *sepa, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable) Definition: scip.c:27616 SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2) Definition: scip.c:41554 void SCIPsortPtrPtrIntInt(void **ptrarray1, void **ptrarray2, int *intarray1, int *intarray2, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len) SCIP_RETCODE SCIPaddCoefKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Longint weight) Definition: cons_knapsack.c:13193 static SCIP_RETCODE createRelaxation(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:786 static SCIP_Bool checkSolveKnapsack(SCIP *scip, int nitems, SCIP_Longint *transweights, SCIP_Real *transprofits, int *items, SCIP_Longint *weights, SCIP_Real *solvals, SCIP_Bool modtransused) Definition: cons_knapsack.c:1563 static SCIP_RETCODE getLiftingSequence(SCIP *scip, SCIP_Real *solvals, SCIP_Longint *weights, int *varsF, int *varsC2, int *varsR, int nvarsF, int nvarsC2, int nvarsR) Definition: cons_knapsack.c:2799 Definition: type_retcode.h:34 void SCIPsortDownRealLongRealInt(SCIP_Real *realarray1, SCIP_Longint *longarray, SCIP_Real *realarray3, int *intarray, int len) SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars) Definition: scip.c:17200 static SCIP_DECL_CONSPRESOL(consPresolKnapsack) Definition: cons_knapsack.c:12381 static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num, SCIP_Bool transformed) Definition: cons_knapsack.c:535 static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos) Definition: cons_knapsack.c:6279 SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars))) Definition: scip.c:5718 SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened) Definition: scip.c:20259 public data structures and miscellaneous methods SCIP_RETCODE SCIPsetConshdlrInitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITPRE((*consinitpre))) Definition: scip.c:5448 SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode) Definition: scip.c:24759 static SCIP_RETCODE enlargeMinweights(SCIP *scip, SCIP_Longint **minweightsptr, int *minweightslen, int *minweightssize, int newlen) Definition: cons_knapsack.c:3405 static SCIP_RETCODE addCliques(SCIP *const scip, SCIP_CONS *const cons, SCIP_Bool *const cutoff, int *const nbdchgs) Definition: cons_knapsack.c:11058 SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs) Definition: scip.c:21797 SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce) Definition: scip.c:25084 static SCIP_RETCODE superadditiveUpLifting(SCIP *scip, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int ncovervars, int nnoncovervars, SCIP_Longint coverweight, SCIP_Real *liftcoefs, SCIP_Real *cutact) Definition: cons_knapsack.c:4636 SCIP_RETCODE SCIPcalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques) Definition: scip.c:21846 Definition: type_message.h:43 Definition: type_var.h:46 SCIP_RETCODE SCIPcacheRowExtensions(SCIP *scip, SCIP_ROW *row) Definition: scip.c:27798 static SCIP_DECL_CONSEXITPRE(consExitpreKnapsack) Definition: cons_knapsack.c:11963 Definition: struct_lp.h:189 SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var) Definition: scip.c:17412 static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, SCIP_EVENTHDLR *eventhdlr, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity) Definition: cons_knapsack.c:573 static SCIP_RETCODE GUBsetCreate(SCIP *scip, SCIP_GUBSET **gubset, int nvars, SCIP_Longint *weights, SCIP_Longint capacity) Definition: cons_knapsack.c:1922 static SCIP_RETCODE catchEvents(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_EVENTHDLR *eventhdlr) Definition: cons_knapsack.c:481 Definition: type_var.h:45 SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp))) Definition: scip.c:5580 Definition: cons_knapsack.c:227 SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var) Definition: var.c:16747 static void normalizeWeights(SCIP_CONS *cons, int *nchgcoefs, int *nchgsides) Definition: cons_knapsack.c:8050 Constraint handler for linear constraints in their most general form, . void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key) Definition: misc.c:1622 static SCIP_RETCODE prepareCons(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, int *nchgcoefs) Definition: cons_knapsack.c:8975 static SCIP_RETCODE deleteRedundantVars(SCIP *scip, SCIP_CONS *cons, SCIP_Longint frontsum, int splitpos, int *nchgcoefs, int *nchgsides, int *naddconss) Definition: cons_knapsack.c:7610 static SCIP_RETCODE changePartitionCovervars(SCIP *scip, SCIP_Longint *weights, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2) Definition: cons_knapsack.c:2670 void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...) Definition: scip.c:1270 static SCIP_RETCODE dropEvents(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_EVENTHDLR *eventhdlr) Definition: cons_knapsack.c:508 static SCIP_RETCODE dualPresolving(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, SCIP_Bool *deleted) Definition: cons_knapsack.c:6684 SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos) Definition: scip.c:36278 SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete))) Definition: scip.c:5534 static SCIP_RETCODE upgradeCons(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *naddconss) Definition: cons_knapsack.c:7538 static SCIP_DECL_CONSSEPALP(consSepalpKnapsack) Definition: cons_knapsack.c:12105 Definition: type_set.h:34 static SCIP_RETCODE sequentialUpAndDownLifting(SCIP *scip, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *varsM1, int *varsM2, int *varsF, int *varsR, int nvarsM1, int nvarsM2, int nvarsF, int nvarsR, int alpha0, int *liftcoefs, SCIP_Real *cutact, int *liftrhs) Definition: cons_knapsack.c:3455 static SCIP_RETCODE createNormalizedKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode) Definition: cons_knapsack.c:11706 static SCIP_DECL_LINCONSUPGD(linconsUpgdKnapsack) Definition: cons_knapsack.c:11801 Definition: struct_misc.h:80 static SCIP_RETCODE GUBconsCreate(SCIP *scip, SCIP_GUBCONS **gubcons) Definition: cons_knapsack.c:1678 static SCIP_RETCODE GUBsetCheck(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars) Definition: cons_knapsack.c:2006 SCIP_RETCODE SCIPchgCapacityKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_Longint capacity) Definition: cons_knapsack.c:13238 SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint))) Definition: scip.c:5741 static SCIP_DECL_CONSGETNVARS(consGetNVarsKnapsack) Definition: cons_knapsack.c:12893 SCIP_RETCODE SCIPflushRowExtensions(SCIP *scip, SCIP_ROW *row) Definition: scip.c:27821 SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate) Definition: scip.c:25059 void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...) Definition: scip.c:1253 static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *ndelconss) Definition: cons_knapsack.c:11388 SCIP_Longint SCIPconshdlrGetNCutsFound(SCIP_CONSHDLR *conshdlr) Definition: cons.c:4525 int SCIPgetNVarsKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13267 static SCIP_Bool checkMinweightidx(SCIP_Longint *weights, SCIP_Longint capacity, int *covervars, int ncovervars, SCIP_Longint coverweight, int minweightidx, int j) Definition: cons_knapsack.c:2578 #define SCIPduplicateBufferArray(scip, ptr, source, num) Definition: scip.h:20422 SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol))) Definition: scip.c:5424 Definition: cons_knapsack.c:225 SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2) Definition: scip.c:41541 SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup) Definition: scip.c:19519 static SCIP_DECL_CONSGETVARS(consGetVarsKnapsack) Definition: cons_knapsack.c:12871 Definition: cons_knapsack.c:237 static SCIP_RETCODE GUBconsAddVar(SCIP *scip, SCIP_GUBCONS *gubcons, int var) Definition: cons_knapsack.c:1719 SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial) Definition: scip.c:25034 static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var) Definition: cons_knapsack.c:467 SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened) Definition: scip.c:20365 static SCIP_RETCODE calcCliquepartition(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool normalclique, SCIP_Bool negatedclique) Definition: cons_knapsack.c:423 SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONSHDLR *conshdlr, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable) Definition: scip.c:27587 Definition: struct_implics.h:64 SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file) Definition: scip.c:28321 static SCIP_DECL_CONSSEPASOL(consSepasolKnapsack) Definition: cons_knapsack.c:12179 SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2) Definition: scip.c:41567 static SCIP_RETCODE tightenWeights(SCIP *scip, SCIP_CONS *cons, SCIP_PRESOLTIMING presoltiming, int *nchgcoefs, int *nchgsides, int *naddconss, int *ndelconss, SCIP_Bool *cutoff) Definition: cons_knapsack.c:10276 #define SCIPduplicateBlockMemoryArray(scip, ptr, source, num) Definition: scip.h:20397 SCIP_RETCODE SCIPcalcNegatedCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques) Definition: scip.c:21995 static SCIP_DECL_CONSENFOLP(consEnfolpKnapsack) Definition: cons_knapsack.c:12240 static SCIP_RETCODE removeZeroWeights(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:6475 Definition: cons_knapsack.c:224 Definition: type_retcode.h:45 SCIP_RETCODE SCIPcalcIntegralScalar(SCIP_Real *vals, int nvals, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Real *intscalar, SCIP_Bool *success) Definition: misc.c:7370 Definition: type_set.h:42 static SCIP_RETCODE makeCoverMinimal(SCIP *scip, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool modtransused) Definition: cons_knapsack.c:5282 SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit))) Definition: scip.c:5376 SCIP_ROW * SCIPgetRowKnapsack(SCIP *scip, SCIP_CONS *cons) Definition: cons_knapsack.c:13380 SCIP_RETCODE SCIPaddVarLocks(SCIP *scip, SCIP_VAR *var, int nlocksdown, int nlocksup) Definition: scip.c:19465 SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname) Definition: cons_linear.c:16184 void SCIPsortPtrPtrLongIntInt(void **ptrarray1, void **ptrarray2, SCIP_Longint *longarray, int *intarray1, int *intarray2, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len) SCIP_RETCODE SCIPaddConflictBinvar(SCIP *scip, SCIP_VAR *var) Definition: scip.c:24560 void SCIPsortDownRealIntLong(SCIP_Real *realarray, int *intarray, SCIP_Longint *longarray, int len) static SCIP_RETCODE getFeasibleSet(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool modtransused, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts) Definition: cons_knapsack.c:5425 static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, int *ndelconss) Definition: cons_knapsack.c:11512 static SCIP_RETCODE eventdataCreate(SCIP *scip, SCIP_EVENTDATA **eventdata, SCIP_CONSDATA *consdata, SCIP_Longint weight) Definition: cons_knapsack.c:291 static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var) Definition: cons_knapsack.c:453 Definition: type_retcode.h:35 static SCIP_RETCODE eventdataFree(SCIP *scip, SCIP_EVENTDATA **eventdata) Definition: cons_knapsack.c:309 static SCIP_RETCODE detectRedundantVars(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss) Definition: cons_knapsack.c:7861 Definition: type_retcode.h:43 SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata) Definition: scip.c:3598 SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars))) Definition: scip.c:5810 SCIP_RETCODE SCIPcreateConsLogicor(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode) Definition: cons_logicor.c:5107 SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val) Definition: scip.c:27851 static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyKnapsack) Definition: cons_knapsack.c:11839 SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2) Definition: misc.c:7078 static SCIP_RETCODE changePartitionFeasiblesetvars(SCIP *scip, SCIP_Longint *weights, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2) Definition: cons_knapsack.c:2710 static SCIP_RETCODE tightenWeightsLift(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, SCIP_Bool *cutoff) Definition: cons_knapsack.c:9696 SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid) Definition: cons_linear.c:16448 void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata) Definition: cons.c:3931 void SCIPsortDownLongPtr(SCIP_Longint *longarray, void **ptrarray, int len) Definition: type_result.h:39 Definition: struct_event.h:185 static void computeMinweightsGUB(SCIP_Longint *minweights, SCIP_Longint *finished, SCIP_Longint *unfinished, int minweightslen) Definition: cons_knapsack.c:3852 void SCIPsortDownLongPtrInt(SCIP_Longint *longarray, void **ptrarray, int *intarray, int len) |