  # SCIP

Solving Constraint Integer Programs

LiftingData Struct Reference

## Detailed Description

structure that contains all data required to perform the sequence independent lifting

Definition at line 4935 of file cuts.c.

SCIP_RealM

SCIP_Realm

int r

int t

SCIP_Real d1

SCIP_Real d2

SCIP_Real lambda

SCIP_Real mp

SCIP_Real ml

## ◆ M

 SCIP_Real* LiftingData::M

$$M_0 := 0.0$$ and $$M_i := M_i-1 + m_i$$

Definition at line 4938 of file cuts.c.

Referenced by computeLiftingData(), destroyLiftingData(), evaluateLiftingFunction(), and getAlphaAndBeta().

## ◆ m

 SCIP_Real* LiftingData::m

non-increasing array of variable upper bound coefficients for all variables in $$C^{++}$$ and $$L^-$$, where $$C = C^+ \cup C^-$$ is the flowcover and $$C^{++} := \{ j \in C^+ \mid u_j > \lambda \}$$ $$L^- := \{ j \in (N^- \setminus C^-) \mid u_j > \lambda \}$$

Definition at line 4939 of file cuts.c.

Referenced by computeLiftingData(), destroyLiftingData(), and evaluateLiftingFunction().

## ◆ r

 int LiftingData::r

size of array m

Definition at line 4945 of file cuts.c.

## ◆ t

 int LiftingData::t

index of smallest value in m that comes from a variable in $$C^{++}$$

Definition at line 4946 of file cuts.c.

Referenced by computeLiftingData(), and evaluateLiftingFunction().

## ◆ d1

 SCIP_Real LiftingData::d1

right hand side of single-node-flow set plus the sum of all $$u_j$$ for $$j \in C^-$$

Definition at line 4947 of file cuts.c.

Referenced by computeLiftingData(), and generateLiftedFlowCoverCut().

## ◆ d2

 SCIP_Real LiftingData::d2

right hand side of single-node-flow set plus the sum of all $$u_j$$ for $$j \in N^-$$

Definition at line 4948 of file cuts.c.

Referenced by computeLiftingData().

## ◆ lambda

 SCIP_Real LiftingData::lambda

excess of the flowcover

Definition at line 4949 of file cuts.c.

## ◆ mp

 SCIP_Real LiftingData::mp

smallest variable bound coefficient of variable in $$C^{++} (min_{j \in C++} u_j)$$

Definition at line 4950 of file cuts.c.

Referenced by computeLiftingData(), and evaluateLiftingFunction().

## ◆ ml

 SCIP_Real LiftingData::ml

$$ml := min(\lambda, \sum_{j \in C^+ \setminus C^{++}} u_j)$$

Definition at line 4951 of file cuts.c.

Referenced by computeLiftingData(), and evaluateLiftingFunction().