scip_nonlinear.c
Go to the documentation of this file.
34 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
57 SCIP_Bool isint, /**< whether corresponding variable is a discrete variable, and thus linearization could be moved */
60 SCIP_Bool* success /**< buffer to set to FALSE if linearization has failed due to large numbers */
97 /* sqrcoef * x^2 -> secant between f=floor(refpoint) and f+1 = sqrcoef * (f^2 + ((f+1)^2 - f^2) * (x-f))
129 SCIP_Bool* success /**< buffer to set to FALSE if secant has failed due to large numbers or unboundedness */
155 /* sqrcoef * x^2 -> sqrcoef * (lb * lb + (ub*ub - lb*lb)/(ub-lb) * (x-lb)) = sqrcoef * (lb*lb + (ub+lb)*(x-lb))
179 SCIP_Bool* success /**< buffer to set to FALSE if linearization has failed due to large numbers */
199 /* bilincoef * x * y -> bilincoef * (refpointx * refpointy + refpointy * (x - refpointx) + refpointx * (y - refpointy))
205 if( SCIPisInfinity(scip, REALABS(bilincoef * refpointx)) || SCIPisInfinity(scip, REALABS(bilincoef * refpointy))
227 SCIP_Bool overestimate, /**< whether to compute an overestimator instead of an underestimator */
231 SCIP_Bool* success /**< buffer to set to FALSE if linearization has failed due to large numbers */
292 /* x*y = lbx * y + (x-lbx) * y >= lbx * y + (x-lbx) * lby >= lbx * y + min{(ubx-lbx) * lby, 0 * lby} */
299 /* x*y = lby * x + (y-lby) * x >= lby * x + (y-lby) * lbx >= lby * x + min{(uby-lby) * lbx, 0 * lbx} */
315 /* x*y = ubx * y + (x-ubx) * y >= ubx * y + (x-ubx) * uby >= ubx * y + min{(lbx-ubx) * uby, 0 * uby} */
322 /* x*y = uby * x + (y-uby) * x >= uby * x + (y-uby) * ubx >= uby * x + min{(lby-uby) * ubx, 0 * ubx} */
349 /* x*y = ubx * y + (x-ubx) * y <= ubx * y + (x-ubx) * lby <= ubx * y + max{(lbx-ubx) * lby, 0 * lby} */
356 /* x*y = lby * x + (y-lby) * x <= lby * x + (y-lby) * ubx <= lby * x + max{(uby-lby) * ubx, 0 * ubx} */
372 /* x*y = lbx * y + (x-lbx) * y <= lbx * y + (x-lbx) * uby <= lbx * y + max{(ubx-lbx) * uby, 0 * uby} */
379 /* x*y = uby * x + (y-uby) * x <= uby * x + (y-uby) * lbx <= uby * x + max{(lby-uby) * lbx, 0 * lbx} */
412 SCIPdebugMsg(scip, "%.15g * x[%.15g,%.15g] * y[%.15g,%.15g] %c= %.15g * x %+.15g * y %+.15g\n", bilincoef, lbx, ubx,
421 /** computes coefficients of linearization of a bilinear term in a reference point when given a linear inequality
424 * @note the formulas are extracted from "Convex envelopes of bivariate functions through the solution of KKT systems"
436 SCIP_Bool overestimate, /**< whether to compute an overestimator instead of an underestimator */
440 SCIP_Real* RESTRICT lincoefx, /**< buffer to store coefficient of first variable in linearization */
441 SCIP_Real* RESTRICT lincoefy, /**< buffer to store coefficient of second variable in linearization */
509 /* we use same notation as in "Convex envelopes of bivariate functions through the solution of KKT systems", 2016 */
544 /* skip if no corner point satisfies the inequality or if no corner point is cut off (that is, all corner points satisfy the inequality almost [1e-9..1e-6]) */
566 SCIPquadprecDivQQ(xjq, xjq, denomq); /* (refpointx * (vy - qj) - vx * (refpointy - qj)) / denom */
574 /* check whether the projection is in [minx,maxx] x [miny,maxy]; this avoids numerical difficulties when the
592 SCIPquadprecSumQQ(lincoefyq, lincoefyq, tmpq); /* mj * xj^2 -2 * vx * mj * xj -qj * vx + vx * vy */
597 SCIPquadprecDivQQ(lincoefyq, lincoefyq, tmpq); /* (mj * xj^2 -2 * vx * mj * xj -qj * vx + vx * vy) / (vy - mj * vx - qj) */
623 /* cut needs to be tight at (vx,vy) and (xj,yj); otherwise we consider the cut to be numerically bad */
624 *success = SCIPisFeasEQ(scip, (*lincoefx)*vx + (*lincoefy)*vy + (*linconstant), bilincoef*vx*vy)
625 && SCIPisFeasEQ(scip, (*lincoefx)*QUAD_TO_DBL(xjq) + (*lincoefy)*QUAD_TO_DBL(yjq) + (*linconstant), bilincoef*QUAD_TO_DBL(xjq)*QUAD_TO_DBL(yjq));
643 /** helper function to compute the convex envelope of a bilinear term when two linear inequalities are given; we
717 assert(EPSEQ(2.0*mi*QUAD_TO_DBL(xiq) - mi * QUAD_TO_DBL(ycoefq) + qi, QUAD_TO_DBL(xcoefq), 1e-3));
724 /* assert(EPSEQ(-mj*SQR(QUAD_TO_DBL(xjq)) - QUAD_TO_DBL(ycoefq) * qj, QUAD_TO_DBL(constantq), 1e-3)); */
780 assert(EPSEQ((2.0*mj*QUAD_TO_DBL(xjq) + qj - 2.0*mi*QUAD_TO_DBL(xiq) - qi) / (mj - mi), QUAD_TO_DBL(ycoefq), 1e-3));
787 assert(EPSEQ(2.0*mj*QUAD_TO_DBL(xjq) + qj - mj*QUAD_TO_DBL(ycoefq), QUAD_TO_DBL(xcoefq), 1e-3));
794 /* assert(EPSEQ(-mj*SQR(QUAD_TO_DBL(xjq)) - QUAD_TO_DBL(ycoefq) * qj, QUAD_TO_DBL(constantq), 1e-3)); */
819 /** computes coefficients of linearization of a bilinear term in a reference point when given two linear inequality
822 * @note the formulas are extracted from "Convex envelopes of bivariate functions through the solution of KKT systems"
835 SCIP_Bool overestimate, /**< whether to compute an overestimator instead of an underestimator */
842 SCIP_Real* RESTRICT lincoefx, /**< buffer to store coefficient of first variable in linearization */
843 SCIP_Real* RESTRICT lincoefy, /**< buffer to store coefficient of second variable in linearization */
895 /* the sign of the x-coefficients of the two inequalities must be different; otherwise the convex or concave
905 /* we use same notation as in "Convex envelopes of bivariate functions through the solution of KKT systems", 2016 */
916 computeBilinEnvelope2(scip, refpointx, refpointy, mi, qi, mj, qj, &xi, &yi, &xj, &yj, &xcoef, &ycoef, &constant);
925 if( SCIPisLE(scip, xi, minx) || SCIPisGE(scip, xi, maxx) || SCIPisLE(scip, yi, miny) || SCIPisGE(scip, yi, maxy) )
927 if( SCIPisLE(scip, xj, minx) || SCIPisGE(scip, xj, maxx) || SCIPisLE(scip, yj, miny) || SCIPisGE(scip, yj, maxy) )
935 *success = SCIPisFeasEQ(scip, (*lincoefx)*xi + (*lincoefy)*yi + (*linconstant), bilincoef*xi*yi)
954 /** creates an NLP relaxation and stores it in a given NLPI problem; the function computes for each variable which the
957 * @note the first row corresponds always to the cutoff row (even if cutoffbound is SCIPinfinity(scip))
965 SCIP_HASHMAP* var2idx, /**< empty hash map to store mapping between variables and indices in nlpi
967 SCIP_HASHMAP* nlrow2idx, /**< empty hash map to store mapping between variables and indices in nlpi
1068 SCIP_CALL( SCIPnlpiSetObjective(nlpi, nlpiprob, nobjinds, objinds, objvals, 0, NULL, NULL, NULL, 0.0) );
1132 lhss[nconss] = uselhs ? SCIPnlrowGetLhs(nlrows[i]) - SCIPnlrowGetConstant(nlrows[i]) : -SCIPinfinity(scip);
1133 rhss[nconss] = userhs ? SCIPnlrowGetRhs(nlrows[i]) - SCIPnlrowGetConstant(nlrows[i]) : SCIPinfinity(scip);
1173 SCIP_CALL( SCIPallocBufferArray(scip, &quadelems[nconss], nquadelems[nconss]) ); /*lint !e866*/
1213 /* note that we don't need to copy the expression tree here since only the mapping between variables in the
1218 SCIP_CALL( SCIPallocBufferArray(scip, &exprvaridxs[nconss], SCIPexprtreeGetNVars(exprtrees[nconss])) ); /*lint !e866*/
1245 SCIP_CALL( SCIPnlpiAddConstraints(nlpi, nlpiprob, nconss, lhss, rhss, nlininds, lininds, linvals, nquadelems,
1346 SCIP_HASHMAP* var2idx, /**< empty hash map to store mapping between variables and indices in nlpi
1407 SCIP_CALL( SCIPnlpiAddConstraints(nlpi, nlpiprob, nrows, lhss, rhss, nlininds, lininds, linvals, NULL,
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:438
SCIP_Bool SCIPisRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1149
SCIP_RETCODE SCIPnlpiAddVars(SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *problem, int nvars, const SCIP_Real *lbs, const SCIP_Real *ubs, const char **varnames)
Definition: nlpi.c:251
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:490
Definition: struct_scip.h:59
public methods for memory management
internal methods for NLPI solver interfaces
Definition: struct_var.h:198
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3131
SCIP_RETCODE SCIPnlpiChgVarBounds(SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *problem, int nvars, const int *indices, const SCIP_Real *lbs, const SCIP_Real *ubs)
Definition: nlpi.c:326
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:799
public methods for problem variables
static void computeBilinEnvelope2(SCIP *scip, SCIP_Real x, SCIP_Real y, SCIP_Real mi, SCIP_Real qi, SCIP_Real mj, SCIP_Real qj, SCIP_Real *RESTRICT xi, SCIP_Real *RESTRICT yi, SCIP_Real *RESTRICT xj, SCIP_Real *RESTRICT yj, SCIP_Real *RESTRICT xcoef, SCIP_Real *RESTRICT ycoef, SCIP_Real *RESTRICT constant)
Definition: scip_nonlinear.c:647
Definition: type_expr.h:100
void SCIPcomputeBilinEnvelope1(SCIP *scip, SCIP_Real bilincoef, SCIP_Real lbx, SCIP_Real ubx, SCIP_Real refpointx, SCIP_Real lby, SCIP_Real uby, SCIP_Real refpointy, SCIP_Bool overestimate, SCIP_Real xcoef, SCIP_Real ycoef, SCIP_Real constant, SCIP_Real *RESTRICT lincoefx, SCIP_Real *RESTRICT lincoefy, SCIP_Real *RESTRICT linconstant, SCIP_Bool *RESTRICT success)
Definition: scip_nonlinear.c:427
Definition: type_expr.h:87
void SCIPaddSquareLinearization(SCIP *scip, SCIP_Real sqrcoef, SCIP_Real refpoint, SCIP_Bool isint, SCIP_Real *lincoef, SCIP_Real *linconstant, SCIP_Bool *success)
Definition: scip_nonlinear.c:53
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
public methods for numerical tolerances
SCIP_RETCODE SCIPnlpiSetObjective(SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *problem, int nlins, const int *lininds, const SCIP_Real *linvals, int nquadelems, const SCIP_QUADELEM *quadelems, const int *exprvaridxs, const SCIP_EXPRTREE *exprtree, const SCIP_Real constant)
Definition: nlpi.c:301
public methods for expressions, expression trees, expression graphs, and related stuff ...
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:464
int SCIPhashmapGetImageInt(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3220
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3362
Definition: struct_misc.h:128
void SCIPaddBilinLinearization(SCIP *scip, SCIP_Real bilincoef, SCIP_Real refpointx, SCIP_Real refpointy, SCIP_Real *lincoefx, SCIP_Real *lincoefy, SCIP_Real *linconstant, SCIP_Bool *success)
Definition: scip_nonlinear.c:171
SCIP_RETCODE SCIPnlpiAddConstraints(SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *problem, int nconss, const SCIP_Real *lhss, const SCIP_Real *rhss, const int *nlininds, int *const *lininds, SCIP_Real *const *linvals, const int *nquadelems, SCIP_QUADELEM *const *quadelems, int *const *exprvaridxs, SCIP_EXPRTREE *const *exprtrees, const char **names)
Definition: nlpi.c:269
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:773
public methods for nonlinear functions
void SCIPcomputeBilinEnvelope2(SCIP *scip, SCIP_Real bilincoef, SCIP_Real lbx, SCIP_Real ubx, SCIP_Real refpointx, SCIP_Real lby, SCIP_Real uby, SCIP_Real refpointy, SCIP_Bool overestimate, SCIP_Real xcoef1, SCIP_Real ycoef1, SCIP_Real constant1, SCIP_Real xcoef2, SCIP_Real ycoef2, SCIP_Real constant2, SCIP_Real *RESTRICT lincoefx, SCIP_Real *RESTRICT lincoefy, SCIP_Real *RESTRICT linconstant, SCIP_Bool *RESTRICT success)
Definition: scip_nonlinear.c:826
SCIP_RETCODE SCIPcreateNlpiProb(SCIP *scip, SCIP_NLPI *nlpi, SCIP_NLROW **nlrows, int nnlrows, SCIP_NLPIPROBLEM *nlpiprob, SCIP_HASHMAP *var2idx, SCIP_HASHMAP *nlrow2idx, SCIP_Real *nlscore, SCIP_Real cutoffbound, SCIP_Bool setobj, SCIP_Bool onlyconvex)
Definition: scip_nonlinear.c:959
Definition: type_retcode.h:33
public methods for NLP management
public data structures and miscellaneous methods
Definition: struct_lp.h:192
public methods for LP management
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:825
SCIP_RETCODE SCIPnlpiChgConsSides(SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *problem, int nconss, const int *indices, const SCIP_Real *lhss, const SCIP_Real *rhss)
Definition: nlpi.c:344
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:812
SCIP_RETCODE SCIPupdateNlpiProb(SCIP *scip, SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *nlpiprob, SCIP_HASHMAP *var2nlpiidx, SCIP_VAR **nlpivars, int nlpinvars, SCIP_Real cutoffbound)
Definition: scip_nonlinear.c:1290
Definition: type_expr.h:86
type definitions for expressions and expression trees
public methods for message output
Definition: struct_nlp.h:63
public methods for message handling
Definition: struct_expr.h:55
void SCIPaddBilinMcCormick(SCIP *scip, SCIP_Real bilincoef, SCIP_Real lbx, SCIP_Real ubx, SCIP_Real refpointx, SCIP_Real lby, SCIP_Real uby, SCIP_Real refpointy, SCIP_Bool overestimate, SCIP_Real *lincoefx, SCIP_Real *lincoefy, SCIP_Real *linconstant, SCIP_Bool *success)
Definition: scip_nonlinear.c:218
Definition: objbenders.h:33
public methods for global and local (sub)problems
Definition: nlpi_all.c:47
void SCIPaddSquareSecant(SCIP *scip, SCIP_Real sqrcoef, SCIP_Real lb, SCIP_Real ub, SCIP_Real refpoint, SCIP_Real *lincoef, SCIP_Real *linconstant, SCIP_Bool *success)
Definition: scip_nonlinear.c:121
SCIP_RETCODE SCIPaddNlpiProbRows(SCIP *scip, SCIP_NLPI *nlpi, SCIP_NLPIPROBLEM *nlpiprob, SCIP_HASHMAP *var2idx, SCIP_ROW **rows, int nrows)
Definition: scip_nonlinear.c:1342
memory allocation routines
Definition: struct_nlpi.h:35