Scippy

SCIP

Solving Constraint Integer Programs

type_benders.h
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the program and library */
4 /* SCIP --- Solving Constraint Integer Programs */
5 /* */
6 /* Copyright (C) 2002-2022 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SCIP is distributed under the terms of the ZIB Academic License. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SCIP; see the file COPYING. If not visit scipopt.org. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 /**@file type_benders.h
17  * @ingroup TYPEDEFINITIONS
18  * @brief type definitions for Benders' decomposition methods
19  * @author Stephen J. Maher
20  */
21 
22 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
23 
24 #ifndef __SCIP_TYPE_BENDERS_H__
25 #define __SCIP_TYPE_BENDERS_H__
26 
27 #include "scip/def.h"
28 #include "scip/type_retcode.h"
29 #include "scip/type_scip.h"
30 
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 
36 {
37  SCIP_BENDERSENFOTYPE_LP = 1, /**< the Benders' subproblems are solved during the enforcement of an LP solution */
38  SCIP_BENDERSENFOTYPE_RELAX = 2, /**< the Benders' subproblems are solved during the enforcement of a relaxation solution */
39  SCIP_BENDERSENFOTYPE_PSEUDO = 3, /**< the Benders' subproblems are solved during the enforcement of a pseudo solution */
40  SCIP_BENDERSENFOTYPE_CHECK = 4 /**< the Benders' subproblems are solved during the checking of a solution for feasibility */
41 };
42 typedef enum SCIP_BendersEnfoType SCIP_BENDERSENFOTYPE; /**< indicates the callback in cons_benders and cons_benderslp that triggered the subproblem solve */
43 
45 {
46  SCIP_BENDERSSOLVELOOP_CONVEX = 0, /**< the relaxation is solved in this iteration of the loop */
47  SCIP_BENDERSSOLVELOOP_CIP = 1, /**< the CIP is solved in this iteration of the loop */
48  SCIP_BENDERSSOLVELOOP_USERCONVEX = 2, /**< the user defined solve function is called */
49  SCIP_BENDERSSOLVELOOP_USERCIP = 3 /**< the user defined solve function is called */
50 };
51 typedef enum SCIP_BendersSolveLoop SCIP_BENDERSSOLVELOOP; /**< identifies the type of problem solved in each solve loop */
52 
54 {
55  SCIP_BENDERSSUBSTATUS_UNKNOWN = 0, /**< the subsystem status is unknown */
56  SCIP_BENDERSSUBSTATUS_OPTIMAL = 1, /**< the subsystem is solved to be optimal */
57  SCIP_BENDERSSUBSTATUS_AUXVIOL = 2, /**< the subproblem is optimal, but the auxiliary variable is violated */
58  SCIP_BENDERSSUBSTATUS_INFEAS = 3 /**< the subproblem is solved to be infeasible */
59 };
61 
63 {
64  SCIP_BENDERSSUBTYPE_CONVEXCONT = 0, /**< the subproblem has convex constraints and continuous variables */
65  SCIP_BENDERSSUBTYPE_CONVEXDIS = 1, /**< the subproblem has convex constraints and discrete variables */
66  SCIP_BENDERSSUBTYPE_NONCONVEXCONT = 2, /**< the subproblem has non-convex constraints and continuous variables */
67  SCIP_BENDERSSUBTYPE_NONCONVEXDIS = 3, /**< the subproblem has non-convex constraints and discrete variables */
68  SCIP_BENDERSSUBTYPE_UNKNOWN = 4, /**< the default type before the type is known */
69 };
71 
72 typedef struct SCIP_Benders SCIP_BENDERS; /**< Benders' decomposition data */
73 typedef struct SCIP_BendersData SCIP_BENDERSDATA; /**< locally defined Benders' decomposition data */
74 typedef struct SCIP_SubproblemSolveStat SCIP_SUBPROBLEMSOLVESTAT; /**< the solving statistics of the subproblems */
75 
76 
77 /** copy method for Benders' decomposition plugins (called when SCIP copies plugins). If there is an active Benders'
78  * decomposition, all copies are not valid. As such, there is no valid parameter that is passed to the callback
79  * function
80  *
81  * input:
82  * - scip : SCIP main data structure
83  * - benders : the Benders' decomposition itself
84  * - threadsafe : must the Benders' decomposition copy be thread safe
85  */
86 #define SCIP_DECL_BENDERSCOPY(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, SCIP_Bool threadsafe)
87 
88 /** destructor of Benders' decomposition to free user data (called when SCIP is exiting)
89  *
90  * input:
91  * - scip : SCIP main data structure
92  * - benders : the Benders' decomposition itself
93  */
94 #define SCIP_DECL_BENDERSFREE(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
95 
96 /** initialization method of Benders' decomposition (called after problem was transformed and the Benders' decomposition
97  * is active)
98  *
99  * input:
100  * - scip : SCIP main data structure
101  * - benders : the Benders' decomposition itself
102  */
103 #define SCIP_DECL_BENDERSINIT(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
104 
105 /** deinitialization method of Benders' decomposition (called before transformed problem is freed and the Benders'
106  * decomposition is active)
107  *
108  * input:
109  * - scip : SCIP main data structure
110  * - benders : the Benders' decomposition itself
111  */
112 #define SCIP_DECL_BENDERSEXIT(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
113 
114 /** presolving initialization method of the Benders' decomposition (called when presolving is about to begin)
115  *
116  * This function is called immediately after the auxiliary variables are created in the master problem. The callback
117  * provides the user an opportunity to add variable data to the auxiliary variables.
118  *
119  * input:
120  * - scip : SCIP main data structure
121  * - benders : the Benders' decomposition itself
122  */
123 #define SCIP_DECL_BENDERSINITPRE(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
124 
125 /** presolving deinitialization method of the Benders' decomposition (called after presolving has been finished)
126  *
127  * input:
128  * - scip : SCIP main data structure
129  * - benders : the Benders' decomposition itself
130  */
131 #define SCIP_DECL_BENDERSEXITPRE(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
132 
133 /** solving process initialization method of Benders' decomposition (called when branch and bound process is about to begin)
134  *
135  * This method is called when the presolving was finished and the branch and bound process is about to begin.
136  * The Benders' decomposition may use this call to initialize its branch and bound specific data.
137  *
138  * input:
139  * - scip : SCIP main data structure
140  * - benders : the Benders' decomposition itself
141  */
142 #define SCIP_DECL_BENDERSINITSOL(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
143 
144 /** solving process deinitialization method of Benders' decomposition (called before branch and bound process data is freed)
145  *
146  * This method is called before the branch and bound process is freed.
147  * The Benders' decomposition should use this call to clean up its branch and bound data.
148  *
149  * input:
150  * - scip : SCIP main data structure
151  * - benders : the Benders' decomposition itself
152  */
153 #define SCIP_DECL_BENDERSEXITSOL(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders)
154 
155 /** the method for creating the Benders' decomposition subproblem. This method is called during the initialisation stage
156  * (after the master problem was transformed).
157  *
158  * @note When the create subproblem callback is invoked, the mapping between the master problem and subproblem
159  * variables must be available. The create subproblem callback is invoked immediately after BENDERSINIT. So, it is
160  * possible to construct the variable mapping within the BENDERSINIT callback.
161  *
162  * This method must register the SCIP instance for the subproblem with the Benders' decomposition core by calling
163  * SCIPaddBendersSubproblem. Typically, the user must create the SCIP instances for the subproblems. These can be
164  * created within a reader or probdata and then registered with the Benders' decomposition core during the call of this
165  * callback. If there are any settings required for solving the subproblems, then they should be set here. However,
166  * some settings will be overridden by the standard solving method included in the Benders' decomposition framework.
167  * If a special solving method is desired, the user can implement the bendersSolvesubXyz callback. In this latter case,
168  * it is possible to provide a NULL pointer to SCIPaddBendersSubproblem. This will ensure that no internal solving
169  * methods available within the Benders' decomposition core are invoked during the solving process.
170  *
171  * If the user defines a subproblem solving method, then in BENDERSCREATESUB, the user must explicitly specify the
172  * subproblem type. This is necessary because the dual solutions from convex problems can be used to generate cuts.
173  * The classical Benders' optimality and feasibility cuts require that the subproblems are convex. The subproblem type
174  * is specified by calling SCIPbendersSetSubproblemType. The available subproblem types are defined in
175  * SCIP_BENDERSSUBTYPE.
176  *
177  * If the user does NOT implement a subproblem solving method, then the convexity of the problem is determined
178  * internally.
179  *
180  * input:
181  * - scip : SCIP main data structure
182  * - benders : the Benders' decomposition data structure
183  * - probnumber : the subproblem problem number
184  */
185 #define SCIP_DECL_BENDERSCREATESUB(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, int probnumber)
186 
187 /** called before the subproblem solving loop for Benders' decomposition. The pre subproblem solve function gives the
188  * user an oppportunity to perform any global set up for the Benders' decomposition.
189  *
190  * input:
191  * - scip : SCIP main data structure
192  * - benders : the Benders' decomposition data structure
193  * - sol : the solution that will be checked in the subproblem. Can be NULL.
194  * - type : the enforcement type that called the Benders' decomposition solve.
195  * - checkint : should the integer subproblems be checked.
196  * - infeasible : flag to return whether the master problem in infeasible with respect to the added cuts
197  * - auxviol : set to TRUE only if the solution is feasible but the aux vars are violated
198  * - skipsolve : flag to return whether the current subproblem solving loop should be skipped
199  * - result : a result to be returned to the Benders' constraint handler if the solve is skipped. If the
200  * solve is not skipped, then the returned result is ignored.
201  *
202  * possible return values for *result (if more than one applies, the first in the list should be used):
203  * - SCIP_DIDNOTRUN : the subproblem was not solved in this iteration. Other decompositions will be checked.
204  * - SCIP_CONSADDED : a constraint has been added to the master problem. No other decompositions will be checked.
205  * - SCIP_SEPARATED : a cut has been added to the master problem. No other decompositions will be checked.
206  * - SCIP_FEASIBLE : feasibility of the solution is reported to SCIP. Other decompositions will be checked.
207  * - SCIP_INFEASIBLE : infeasibility of the solution is reported to SCIP. No other decompositions will be checked.
208  */
209 #define SCIP_DECL_BENDERSPRESUBSOLVE(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, SCIP_SOL* sol,\
210  SCIP_BENDERSENFOTYPE type, SCIP_Bool checkint, SCIP_Bool* infeasible, SCIP_Bool* auxviol, SCIP_Bool* skipsolve,\
211  SCIP_RESULT* result)
212 
213 /** the solving method for a convex Benders' decomposition subproblem. This call back is provided to solve problems
214  * for which the dual soluitons are used to generate Benders' decomposition cuts. In the classical Benders'
215  * decomposition implementation, this would be an LP. However, it can be any convex problem where the dual solutions
216  * are given by a single vector of reals.
217  *
218  * In the Benders' decomposition subproblem solving process, there are two solving loops. The first is where the convex
219  * subproblems, and the convex relaxations of subproblems, are solved. If no cuts are generated after this solving
220  * loop, then the second loop solves subproblems defined as CIPs. This callback is executed during the FIRST solving
221  * loop only.
222  *
223  * In the classical Benders' decomposition implementation, if the subproblems are all LPs the only the
224  * BENDERSSOLVESUBCONVEX need to be implemented. If the subproblems are MIPs, then it is useful to only implement a
225  * single SCIP instance for the subproblem and then change the variable types of the appropriate variables to
226  * CONTINUOUS for the CONVEX subproblem solve and to INTEGER for the CIP subproblem solve.
227  *
228  * The solving methods are separated so that they can be called in parallel.
229  *
230  * NOTE: The solving methods must be thread safe.
231  *
232  * This method is called from within the execution method.
233  *
234  * input:
235  * - scip : SCIP main data structure
236  * - benders : the Benders' decomposition data structure
237  * - sol : the solution that will be checked in the subproblem. Can be NULL.
238  * - probnumber : the subproblem problem number
239  * - onlyconvexcheck : flag to indicate that only the convex relaxations will be checked in this solving loop. This is
240  * a feature of the Large Neighbourhood Benders' Search
241  * - objective : variable to return the objective function value of the subproblem
242  * - result : the result from solving the subproblem
243  *
244  * possible return values for *result (if more than one applies, the first in the list should be used):
245  * - SCIP_DIDNOTRUN : the subproblem was not solved in this iteration
246  * - SCIP_FEASIBLE : the subproblem is solved and is feasible
247  * - SCIP_INFEASIBLE : the subproblem is solved and is infeasible
248  * - SCIP_UNBOUNDED : the subproblem is solved and is unbounded
249  */
250 #define SCIP_DECL_BENDERSSOLVESUBCONVEX(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, SCIP_SOL* sol,\
251  int probnumber, SCIP_Bool onlyconvexcheck, SCIP_Real* objective, SCIP_RESULT* result)
252 
253 /** the solving method for a Benders' decomposition subproblem as a CIP. This call back is provided to solve problems
254  * for which the dual solutions are not well defined. In this case, the cuts are typically generated from the primal
255  * solution to the CIP. In the classical Benders' decomposition implementation, this would be a MIP. However, it can
256  * be any CIP.
257  *
258  * In the Benders' decomposition subproblem solving process, there are two solving loops. The first is where the convex
259  * subproblems, and the convex relaxations of subproblems, are solved. If no cuts are generated after this solving
260  * loop, then the second loop solves subproblems defined as CIPs. This callback is executed during the SECOND solving
261  * loop only.
262  *
263  * The solving methods are separated so that they can be called in parallel.
264  *
265  * NOTE: The solving methods must be thread safe.
266  *
267  * This method is called from within the execution method.
268  *
269  * input:
270  * - scip : SCIP main data structure
271  * - benders : the Benders' decomposition data structure
272  * - sol : the solution that will be checked in the subproblem. Can be NULL.
273  * - probnumber : the subproblem problem number
274  * - objective : variable to return the objective function value of the subproblem
275  * - result : the result from solving the subproblem
276  *
277  * possible return values for *result (if more than one applies, the first in the list should be used):
278  * - SCIP_DIDNOTRUN : the subproblem was not solved in this iteration
279  * - SCIP_FEASIBLE : the subproblem is solved and is feasible
280  * - SCIP_INFEASIBLE : the subproblem is solved and is infeasible
281  * - SCIP_UNBOUNDED : the subproblem is solved and is unbounded
282  */
283 #define SCIP_DECL_BENDERSSOLVESUB(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, SCIP_SOL* sol, int probnumber,\
284  SCIP_Real* objective, SCIP_RESULT* result)
285 
286 /** the post-solve method for Benders' decomposition. The post-solve method is called after the subproblems have
287  * been solved but before they have been freed. After the solving of the Benders' decomposition subproblems, the
288  * subproblem solving data is freed in the SCIP_DECL_BENDERSFREESUB callback. However, it is not necessary to implement
289  * SCIP_DECL_BENDERSFREESUB.
290  *
291  * If SCIP_DECL_BENDERSFREESUB is not implemented, then the Benders' decomposition framework will perform a default
292  * freeing of the subproblems. If a subproblem is an LP, then they will be in probing mode for the subproblem
293  * solve. So the freeing process involves ending the probing mode. If the subproblem is a MIP, then the subproblem is
294  * solved by calling SCIPsolve. As such, the transformed problem must be freed after each subproblem solve.
295  *
296  * This callback provides the opportunity for the user to clean up any data structures that should not exist beyond the current
297  * iteration.
298  * The user has full access to the master and subproblems in this callback. So it is possible to construct solution for
299  * the master problem in the method.
300  * Additionally, if there are any subproblems that are infeasibility and this can not be resolved, then the it is
301  * possible to merge these subproblems into the master problem. The subproblem indices are given in the mergecands
302  * array. The merging can be perform by a user defined function or by calling SCIPmergeBendersSubproblemIntoMaster. If a
303  * subproblem was merged into the master problem, then the merged flag must be set to TRUE.
304  *
305  * input:
306  * - scip : SCIP main data structure
307  * - benders : the Benders' decomposition data structure
308  * - sol : the solution that was checked by solving the subproblems. Can be NULL.
309  * - type : the enforcement type that called the Benders' decomposition solve.
310  * - mergecands : the subproblems that are candidates for merging into the master problem, the first
311  * npriomergecands are the priority candidates (they should be merged). The remaining
312  * (nmergecands - npriomergecands) are subproblems that could be merged if desired.
313  * - npriomergecands : the number of priority merge candidates.
314  * - nmergecands : the total number of subproblems that are candidates for merging into the master problem
315  * - checkint : should the integer subproblems be checked.
316  * - infeasible : indicates whether at least one subproblem is infeasible
317  * - merged : flag to indicate whether a subproblem was merged into the master problem.
318  */
319 #define SCIP_DECL_BENDERSPOSTSOLVE(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, SCIP_SOL* sol,\
320  SCIP_BENDERSENFOTYPE type, int* mergecands, int npriomergecands, int nmergecands, SCIP_Bool checkint,\
321  SCIP_Bool infeasible, SCIP_Bool* merged)
322 
323 /** frees the subproblem so that it can be resolved in the next iteration. As stated above, it is not necessary to
324  * implement this callback. If the callback is implemented, the subproblems should be freed by calling
325  * SCIPfreeTransform(). However, if the subproblems are LPs, then it could be more efficient to put the subproblem
326  * into probing mode prior to solving and then exiting the probing mode during the callback. To put the subproblem into
327  * probing mode, the subproblem must be in SCIP_STAGE_SOLVING. This can be achieved by using eventhandlers.
328  *
329  * If SCIP_DECL_BENDERSFREESUB is not implemented, then the Benders' decomposition framework will perform a default
330  * freeing of the subproblems. If a subproblem is an LP, then they will be in probing mode for the subproblem
331  * solve. So the freeing process involves ending the probing mode. If the subproblem is a MIP, then the subproblem is
332  * solved by calling SCIPsolve. As such, the transformed problem must be freed after each subproblem solve.
333  *
334  * NOTE: The freeing methods must be thread safe.
335  *
336  * input:
337  * - scip : SCIP main data structure
338  * - benders : the Benders' decomposition data structure
339  * - probnumber : the subproblem problem number
340  */
341 #define SCIP_DECL_BENDERSFREESUB(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, int probnumber)
342 
343 /** the variable mapping from the subproblem to the master problem. It is neccessary to have a mapping between every
344  * master problem variable and its counterpart in the subproblem. This mapping must go both ways: from master to sub
345  * and sub to master.
346  *
347  * This method is called when generating the cuts. The cuts are generated by using the solution to the subproblem to
348  * eliminate a solution to the master problem.
349  *
350  * input:
351  * - scip : SCIP main data structure
352  * - benders : the Benders' decomposition structure
353  * - var : the variable for which the corresponding variable in the master or subproblem is required
354  * - mappedvar : pointer to store the variable that is mapped to var
355  * - probnumber : the number of the subproblem that the desired variable belongs to, -1 for the master problem
356  */
357 #define SCIP_DECL_BENDERSGETVAR(x) SCIP_RETCODE x (SCIP* scip, SCIP_BENDERS* benders, SCIP_VAR* var,\
358  SCIP_VAR** mappedvar, int probnumber)
359 
360 #ifdef __cplusplus
361 }
362 #endif
363 
364 #endif
SCIP_BendersEnfoType
Definition: type_benders.h:35
enum SCIP_BendersEnfoType SCIP_BENDERSENFOTYPE
Definition: type_benders.h:42
type definitions for return codes for SCIP methods
SCIP_BendersSubType
Definition: type_benders.h:62
enum SCIP_BendersSubType SCIP_BENDERSSUBTYPE
Definition: type_benders.h:70
SCIP_BendersSolveLoop
Definition: type_benders.h:44
type definitions for SCIP&#39;s main datastructure
struct SCIP_BendersData SCIP_BENDERSDATA
Definition: type_benders.h:73
enum SCIP_BendersSolveLoop SCIP_BENDERSSOLVELOOP
Definition: type_benders.h:51
SCIP_BendersSubStatus
Definition: type_benders.h:53
common defines and data types used in all packages of SCIP
enum SCIP_BendersSubStatus SCIP_BENDERSSUBSTATUS
Definition: type_benders.h:60