Scippy

SCIP

Solving Constraint Integer Programs

heur_dins.c
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the program and library */
4 /* SCIP --- Solving Constraint Integer Programs */
5 /* */
6 /* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7 /* */
8 /* Licensed under the Apache License, Version 2.0 (the "License"); */
9 /* you may not use this file except in compliance with the License. */
10 /* You may obtain a copy of the License at */
11 /* */
12 /* http://www.apache.org/licenses/LICENSE-2.0 */
13 /* */
14 /* Unless required by applicable law or agreed to in writing, software */
15 /* distributed under the License is distributed on an "AS IS" BASIS, */
16 /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17 /* See the License for the specific language governing permissions and */
18 /* limitations under the License. */
19 /* */
20 /* You should have received a copy of the Apache-2.0 license */
21 /* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22 /* */
23 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24 
25 /**@file heur_dins.c
26  * @ingroup DEFPLUGINS_HEUR
27  * @brief DINS primal heuristic (according to Ghosh)
28  * @author Timo Berthold
29  * @author Robert Waniek
30  */
31 
32 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
33 
34 #include "blockmemshell/memory.h"
35 #include "scip/cons_linear.h"
36 #include "scip/heur_dins.h"
37 #include "scip/heuristics.h"
38 #include "scip/pub_event.h"
39 #include "scip/pub_heur.h"
40 #include "scip/pub_message.h"
41 #include "scip/pub_misc.h"
42 #include "scip/pub_var.h"
43 #include "scip/scip_branch.h"
44 #include "scip/scip_cons.h"
45 #include "scip/scip_copy.h"
46 #include "scip/scip_event.h"
47 #include "scip/scip_general.h"
48 #include "scip/scip_heur.h"
49 #include "scip/scip_lp.h"
50 #include "scip/scip_mem.h"
51 #include "scip/scip_message.h"
52 #include "scip/scip_nodesel.h"
53 #include "scip/scip_numerics.h"
54 #include "scip/scip_param.h"
55 #include "scip/scip_prob.h"
56 #include "scip/scip_sol.h"
57 #include "scip/scip_solve.h"
58 #include "scip/scip_solvingstats.h"
59 #include "scip/scip_var.h"
60 #include <string.h>
61 
62 #define HEUR_NAME "dins"
63 #define HEUR_DESC "distance induced neighborhood search by Ghosh"
64 #define HEUR_DISPCHAR SCIP_HEURDISPCHAR_LNS
65 #define HEUR_PRIORITY -1105000
66 #define HEUR_FREQ -1
67 #define HEUR_FREQOFS 0
68 #define HEUR_MAXDEPTH -1
69 #define HEUR_TIMING SCIP_HEURTIMING_AFTERLPNODE
70 #define HEUR_USESSUBSCIP TRUE /**< does the heuristic use a secondary SCIP instance? */
71 
72 #define DEFAULT_NODESOFS 5000LL /* number of nodes added to the contingent of the total nodes */
73 #define DEFAULT_MAXNODES 5000LL /* maximum number of nodes to regard in the subproblem */
74 #define DEFAULT_MINNODES 50LL /* minimum number of nodes to regard in the subproblem */
75 #define DEFAULT_MINIMPROVE 0.01 /* factor by which DINS should at least improve the incumbent */
76 #define DEFAULT_NODESQUOT 0.05 /* subproblem nodes in relation to nodes of the original problem */
77 #define DEFAULT_LPLIMFAC 1.5 /* factor by which the limit on the number of LP depends on the node limit */
78 #define DEFAULT_MINFIXINGRATE 0.3 /* minimum percentage of integer variables that have to be fixed */
79 #define DEFAULT_NWAITINGNODES 200LL /* number of nodes without incumbent change that heuristic should wait */
80 #define DEFAULT_NEIGHBORHOODSIZE 18 /* radius of the incumbents neighborhood to be searched */
81 #define DEFAULT_SOLNUM 5 /* number of pool-solutions to be checked for flag array update */
82 #define DEFAULT_USELPROWS FALSE /* should subproblem be created out of the rows in the LP rows,
83  * otherwise, the copy constructors of the constraints handlers are used */
84 #define DEFAULT_COPYCUTS TRUE /* if DEFAULT_USELPROWS is FALSE, then should all active cuts from the cutpool
85  * of the original scip be copied to constraints of the subscip */
86 
87 #define DEFAULT_BESTSOLLIMIT 3 /* limit on number of improving incumbent solutions in sub-CIP */
88 #define DEFAULT_USEUCT FALSE /* should uct node selection be used at the beginning of the search? */
89 
90 
91 /* event handler properties */
92 #define EVENTHDLR_NAME "Dins"
93 #define EVENTHDLR_DESC "LP event handler for " HEUR_NAME " heuristic"
94 
95 /*
96  * Data structures
97  */
98 
99 /** DINS primal heuristic data */
100 struct SCIP_HeurData
101 {
102  SCIP_Longint nodesofs; /**< number of nodes added to the contingent of the total nodes */
103  SCIP_Longint maxnodes; /**< maximum number of nodes to regard in the subproblem */
104  SCIP_Longint minnodes; /**< minimum number of nodes to regard in the subproblem */
105  SCIP_Real minfixingrate; /**< minimum percentage of integer variables that have to be fixed */
106  SCIP_Longint nwaitingnodes; /**< number of nodes without incumbent change that heuristic should wait */
107  SCIP_Real minimprove; /**< factor by which DINS should at least improve the incumbent */
108  SCIP_Longint usednodes; /**< nodes already used by DINS in earlier calls */
109  SCIP_Longint lastnsolsfound; /**< total number of found solutions at previous execution of DINS */
110  SCIP_Real nodesquot; /**< subproblem nodes in relation to nodes of the original problem */
111  SCIP_Real nodelimit; /**< the nodelimit employed in the current sub-SCIP, for the event handler*/
112  SCIP_Real lplimfac; /**< factor by which the limit on the number of LP depends on the node limit */
113  int neighborhoodsize; /**< radius of the incumbent's neighborhood to be searched */
114  SCIP_Bool* delta; /**< stores whether a variable kept its value from root LP all the time */
115  int deltalength; /**< if there are no binary variables, we need no flag array */
116  int solnum; /**< number of pool-solutions to be checked for flag array update */
117  SCIP_Bool uselprows; /**< should subproblem be created out of the rows in the LP rows? */
118  SCIP_Bool copycuts; /**< if uselprows == FALSE, should all active cuts from cutpool be copied
119  * to constraints in subproblem?
120  */
121  int bestsollimit; /**< limit on number of improving incumbent solutions in sub-CIP */
122  SCIP_Bool useuct; /**< should uct node selection be used at the beginning of the search? */
123 };
124 
125 
126 /*
127  * Local methods
128  */
129 
130 /** compute tightened bounds for integer variables depending on how much the LP and the incumbent solution values differ */
131 static
133  SCIP* scip, /**< SCIP data structure of the original problem */
134  SCIP_VAR* var, /**< the variable for which bounds should be computed */
135  SCIP_Real* lbptr, /**< pointer to store the lower bound in the DINS sub-SCIP */
136  SCIP_Real* ubptr /**< pointer to store the upper bound in the DINS sub-SCIP */
137  )
138 {
139  SCIP_Real mipsol;
140  SCIP_Real lpsol;
141 
142  SCIP_Real lbglobal;
143  SCIP_Real ubglobal;
144  SCIP_SOL* bestsol;
145 
146  /* get the bounds for each variable */
147  lbglobal = SCIPvarGetLbGlobal(var);
148  ubglobal = SCIPvarGetUbGlobal(var);
149 
150  assert(SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
151  /* get the current LP solution for each variable */
152  lpsol = SCIPvarGetLPSol(var);
153 
154  /* get the current MIP solution for each variable */
155  bestsol = SCIPgetBestSol(scip);
156  mipsol = SCIPgetSolVal(scip, bestsol, var);
157 
158  /* if the solution values differ by 0.5 or more, the variable is rebounded, otherwise it is just copied */
159  if( REALABS(lpsol - mipsol) >= 0.5 )
160  {
161  SCIP_Real range;
162 
163  *lbptr = lbglobal;
164  *ubptr = ubglobal;
165 
166  /* create a equally sized range around lpsol for general integers: bounds are lpsol +- (mipsol-lpsol) */
167  range = 2*lpsol-mipsol;
168 
169  if( mipsol >= lpsol )
170  {
171  range = SCIPfeasCeil(scip, range);
172  *lbptr = MAX(*lbptr, range);
173 
174  /* when the bound new upper bound is equal to the current MIP solution, we set both bounds to the integral bound (without eps) */
175  if( SCIPisFeasEQ(scip, mipsol, *lbptr) )
176  *ubptr = *lbptr;
177  else
178  *ubptr = mipsol;
179  }
180  else
181  {
182  range = SCIPfeasFloor(scip, range);
183  *ubptr = MIN(*ubptr, range);
184 
185  /* when the bound new upper bound is equal to the current MIP solution, we set both bounds to the integral bound (without eps) */
186  if( SCIPisFeasEQ(scip, mipsol, *ubptr) )
187  *lbptr = *ubptr;
188  else
189  *lbptr = mipsol;
190  }
191 
192  /* the global domain of variables might have been reduced since incumbent was found: adjust lb and ub accordingly */
193  *lbptr = MAX(*lbptr, lbglobal);
194  *ubptr = MIN(*ubptr, ubglobal);
195  }
196  else
197  {
198  /* the global domain of variables might have been reduced since incumbent was found: adjust it accordingly */
199  *lbptr = MAX(mipsol, lbglobal);
200  *ubptr = MIN(mipsol, ubglobal);
201  }
202 }
203 
204 /** creates a subproblem for subscip by fixing a number of variables */
205 static
207  SCIP* scip, /**< SCIP data structure of the original problem */
208  SCIP_HEUR* heur, /**< DINS heuristic structure */
209  SCIP_HEURDATA* heurdata, /**< heuristic data structure */
210  SCIP_VAR** vars, /**< variables of the original problem */
211  SCIP_VAR** fixedvars, /**< array to store variables that should be fixed in the sub-SCIP */
212  SCIP_Real* fixedvals, /**< array to store fixing values for fixed variables */
213  int nbinvars, /**< number of binary variables of problem and subproblem */
214  int nintvars, /**< number of general integer variables of problem and subproblem */
215  int* binfixings, /**< pointer to store number of binary variables that should be fixed */
216  int* intfixings /**< pointer to store number of integer variables that should be fixed */
217  )
218 {
219  SCIP_SOL* bestsol;
220  SCIP_SOL** sols;
221  SCIP_Bool* delta;
222  int i;
223  int nsols;
224  SCIP_Longint nsolsfound;
225  int checklength;
226  int nfixedvars;
227 
228  assert(scip != NULL);
229  assert(vars != NULL);
230  assert(fixedvars != NULL);
231  assert(fixedvals != NULL);
232  assert(binfixings != NULL);
233  assert(intfixings != NULL);
234  assert(heur != NULL);
235 
236  /* get the best MIP-solution known so far */
237  bestsol = SCIPgetBestSol(scip);
238  assert(bestsol != NULL);
239 
240  /* get solution pool and number of solutions in pool */
241  sols = SCIPgetSols(scip);
242  nsols = SCIPgetNSols(scip);
243  nsolsfound = SCIPgetNSolsFound(scip);
244  checklength = MIN(nsols, heurdata->solnum);
245  assert(sols != NULL);
246  assert(nsols > 0);
247 
248  /* if new binary variables have been created, e.g., due to column generation, reallocate the delta array */
249  if( heurdata->deltalength < nbinvars )
250  {
251  int newsize;
252 
253  newsize = SCIPcalcMemGrowSize(scip, nbinvars);
254  assert(newsize >= nbinvars);
255 
256  SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &heurdata->delta, heurdata->deltalength, newsize) );
257 
258  /* initialize new part of delta array */
259  for( i = heurdata->deltalength; i < newsize; i++ )
260  heurdata->delta[i] = TRUE;
261 
262  heurdata->deltalength = newsize;
263  }
264 
265  delta = heurdata->delta;
266  /* fixing for binary variables */
267  /* hard fixing for some with mipsol(s)=lpsolval=rootlpsolval and preparation for soft fixing for the remaining */
268  nfixedvars = 0;
269  *intfixings = *binfixings = 0;
270  for( i = 0; i < nbinvars; i++ )
271  {
272  SCIP_Real lpsolval;
273  SCIP_Real mipsolval;
274  SCIP_Real rootlpsolval;
275  int j;
276 
277  /* get the current LP solution for each variable */
278  lpsolval = SCIPvarGetLPSol(vars[i]);
279  /* get the current MIP solution for each variable */
280  mipsolval = SCIPgetSolVal(scip, bestsol, vars[i]);
281  /* get the root LP solution for each variable */
282  rootlpsolval = SCIPvarGetRootSol(vars[i]);
283 
284  if( SCIPisFeasEQ(scip, lpsolval, mipsolval) && SCIPisFeasEQ(scip, mipsolval, rootlpsolval) )
285  {
286  /* update delta */
287  if( nsols > 1 && heurdata->lastnsolsfound != nsolsfound && delta[i] ) /* no need to update delta[i] if already FALSE */
288  {
289  /* no need to update delta[i] if already FALSE or sols[i] already checked on previous run or worse than DINS-solution of last run */
290  for( j = 1; delta[i] && j < checklength && SCIPgetSolHeur(scip, sols[j]) != heur ; j++ )
291  {
292  SCIP_Real solval;
293  solval = SCIPgetSolVal(scip, sols[j], vars[i]);
294  delta[i] = delta[i] && SCIPisFeasEQ(scip, mipsolval, solval);
295  }
296  }
297 
298  /* hard fixing if rootlpsolval=nodelpsolval=mipsolval(s) and delta (is TRUE) */
299  if( delta[i] )
300  {
301  fixedvars[nfixedvars] = vars[i];
302  fixedvals[nfixedvars] = mipsolval;
303  ++nfixedvars;
304  }
305  }
306  }
307 
308  *binfixings = nfixedvars;
309 
310  /* store the number of found solutions for next run */
311  heurdata->lastnsolsfound = nsolsfound;
312 
313  /* compute a tighter bound for the variable in the subproblem; */
314  for( i = nbinvars; i < nbinvars + nintvars; ++i )
315  {
316  SCIP_Real lb;
317  SCIP_Real ub;
318  computeIntegerVariableBounds(scip, vars[i], &lb, &ub);
319 
320  /* hard fixing if heuristic bounds coincide */
321  if( ub - lb < 0.5 )
322  {
323  fixedvars[(nfixedvars)] = vars[i];
324  fixedvals[(nfixedvars)] = lb;
325  ++nfixedvars;
326  }
327  }
328 
329  *intfixings = nfixedvars - *binfixings;
330 
331  return SCIP_OKAY;
332 }
333 
334 /** creates a subproblem for subscip by fixing a number of variables */
335 static
337  SCIP* scip, /**< SCIP data structure of the original problem */
338  SCIP* subscip, /**< SCIP data structure of the subproblem */
339  SCIP_VAR** vars, /**< variables of the original problem */
340  SCIP_VAR** subvars, /**< variables of the DINS sub-SCIP */
341  int nbinvars, /**< number of binary variables of problem and subproblem */
342  int nintvars /**< number of general integer variables of problem and subproblem */
343  )
344 {
345  int i;
346  /* compute a tighter bound for the variable in the subproblem; */
347  for( i = nbinvars; i < nbinvars + nintvars; ++i )
348  {
349  SCIP_Real lb;
350  SCIP_Real ub;
351 
352  if( subvars[i] == NULL )
353  continue;
354 
355  computeIntegerVariableBounds(scip, vars[i], &lb, &ub);
356 
357  /* change variable bounds in the DINS subproblem; if bounds coincide, variable should already be fixed */
358  if( ub - lb >= 0.5 )
359  {
360  SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) );
361  SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) );
362  }
363  else
364  {
365  assert(SCIPisFeasEQ(scip, SCIPvarGetLbGlobal(subvars[i]), SCIPvarGetUbGlobal(subvars[i])));
366  }
367  }
368 
369  return SCIP_OKAY;
370 }
371 
372 /** create the extra constraint of local branching and add it to subscip */
373 static
375  SCIP* scip, /**< SCIP data structure of the original problem */
376  SCIP* subscip, /**< SCIP data structure of the subproblem */
377  SCIP_VAR** subvars, /**< variables of the subproblem */
378  SCIP_HEURDATA* heurdata /**< heuristic's data structure */
379  )
380 {
381  SCIP_CONS* cons; /* local branching constraint to create */
382  SCIP_VAR** vars;
383  SCIP_SOL* bestsol;
384 
385  SCIP_VAR** consvars;
386  SCIP_Real* consvals;
387  SCIP_Real solval;
388  SCIP_Real lhs;
389  SCIP_Real rhs;
390 
391  char consname[SCIP_MAXSTRLEN];
392 
393  int nbinvars;
394  int i;
395  int nconsvars;
396 
397  (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "%s_dinsLBcons", SCIPgetProbName(scip));
398 
399  /* get the data of the variables and the best solution */
400  SCIP_CALL( SCIPgetVarsData(scip, &vars, NULL, &nbinvars, NULL, NULL, NULL) );
401  bestsol = SCIPgetBestSol(scip);
402  assert(bestsol != NULL);
403 
404  /* memory allocation */
405  SCIP_CALL( SCIPallocBufferArray(scip, &consvals, nbinvars) );
406  SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nbinvars) );
407  nconsvars = 0;
408 
409  /* set initial left and right hand sides of local branching constraint */
410  lhs = 0.0;
411  rhs = (SCIP_Real) heurdata->neighborhoodsize;
412 
413  /* create the distance function of the binary variables (to incumbent solution) */
414  for( i = 0; i < nbinvars; i++ )
415  {
416  if( subvars[i] == NULL )
417  continue;
418 
419  assert(SCIPvarGetType(subvars[i]) == SCIP_VARTYPE_BINARY);
420  if( SCIPvarGetUbGlobal(subvars[i]) - SCIPvarGetLbGlobal(subvars[i]) < 0.5 )
421  continue;
422 
423  solval = SCIPgetSolVal(scip, bestsol, vars[i]);
424  assert(SCIPisFeasIntegral(scip, solval));
425 
426  /* is variable i part of the binary support of the current solution? */
427  if( SCIPisFeasEQ(scip, solval, 1.0) )
428  {
429  consvals[nconsvars] = -1.0;
430  rhs -= 1.0;
431  lhs -= 1.0;
432  }
433  else
434  consvals[nconsvars] = 1.0;
435  consvars[nconsvars++] = subvars[i];
436  }
437 
438  /* creates local branching constraint and adds it to subscip */
439  SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, consname, nconsvars, consvars, consvals,
440  lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
441  SCIP_CALL( SCIPaddCons(subscip, cons) );
442  SCIP_CALL( SCIPreleaseCons(subscip, &cons) );
443 
444  /* free local memory */
445  SCIPfreeBufferArray(scip, &consvars);
446  SCIPfreeBufferArray(scip, &consvals);
447 
448  return SCIP_OKAY;
449 }
450 
451 static
452 SCIP_DECL_EVENTEXEC(eventExecDins);
453 
454 /** wrapper for the part of heuristic that runs a subscip. Wrapper is needed to avoid possible ressource leaks */
455 static
457  SCIP* scip, /**< original SCIP data structure */
458  SCIP* subscip, /**< SCIP structure of the subproblem */
459  SCIP_HEUR* heur, /**< Heuristic pointer */
460  SCIP_HEURDATA* heurdata, /**< Heuristic's data */
461  SCIP_VAR** vars, /**< original problem's variables */
462  SCIP_VAR** fixedvars, /**< Fixed variables of original SCIP */
463  SCIP_Real* fixedvals, /**< Fixed values of original SCIP */
464  SCIP_RESULT* result, /**< Result pointer */
465  int nvars, /**< Number of variables */
466  int nbinvars, /**< Number of binary variables in original SCIP */
467  int nintvars, /**< Number of integer variables in original SCIP */
468  int binfixings, /**< Number of binary fixing in original SCIP */
469  int intfixings, /**< Number of integer fixings in original SCIP */
470  SCIP_Longint nsubnodes /**< Number of nodes in the subscip */
471  )
472 {
473  SCIP_VAR** subvars; /* variables of the subscip */
474  SCIP_HASHMAP* varmapfw; /* hashmap for mapping between vars of scip and subscip */
475  SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */
476  SCIP_Real upperbound; /* upperbound of the original SCIP */
477  SCIP_Real cutoff; /* objective cutoff for the subproblem */
478 
479  SCIP_Bool success;
480 
481  int i;
482  int nsubsols;
483 
484  /* create the variable mapping hash map */
485  SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
486  SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), nvars) );
487 
488  success = FALSE;
489  eventhdlr = NULL;
490 
491  /* create a problem copy as sub SCIP */
492  SCIP_CALL( SCIPcopyLargeNeighborhoodSearch(scip, subscip, varmapfw, "dins", fixedvars, fixedvals, binfixings + intfixings,
493  heurdata->uselprows, heurdata->copycuts, &success, NULL) );
494 
495  /* create event handler for LP events */
496  SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecDins, NULL) );
497  if( eventhdlr == NULL )
498  {
499  SCIPerrorMessage("event handler for " HEUR_NAME " heuristic not found.\n");
500  return SCIP_PLUGINNOTFOUND;
501  }
502 
503  SCIPdebugMsg(scip, "Copying the SCIP instance was %ssuccessful.\n", success ? "" : "not ");
504 
505  SCIPdebugMsg(scip, "DINS subproblem: %d vars (%d binvars & %d intvars), %d cons\n",
506  SCIPgetNVars(subscip), SCIPgetNBinVars(subscip) , SCIPgetNIntVars(subscip) , SCIPgetNConss(subscip));
507 
508  /* store subproblem variables that correspond to original variables */
509  for( i = 0; i < nvars; i++ )
510  subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);
511 
512  /* free hash map */
513  SCIPhashmapFree(&varmapfw);
514 
515  /* perform prepared softfixing for all unfixed vars if the number of unfixed vars is larger than the neighborhoodsize (otherwise it will be useless) */
516  if( nbinvars - binfixings > heurdata->neighborhoodsize )
517  {
518  SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) );
519  }
520 
521  /* rebound integer variables if not all were fixed */
522  if( intfixings < nintvars )
523  {
524  assert(nintvars > 0);
525  SCIP_CALL( reboundIntegerVariables(scip, subscip, vars, subvars, nbinvars, nintvars) );
526  }
527 
528  /* do not abort subproblem on CTRL-C */
529  SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );
530 
531 #ifdef SCIP_DEBUG
532  /* for debugging, enable full output */
533  SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) );
534  SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) );
535 #else
536  /* disable statistic timing inside sub SCIP and output to console */
537  SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );
538  SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) );
539 #endif
540 
541  /* set limits for the subproblem */
542  SCIP_CALL( SCIPcopyLimits(scip, subscip) );
543  heurdata->nodelimit = nsubnodes;
544  SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) );
545  SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) );
546  SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", heurdata->bestsollimit) );
547 
548  /* forbid recursive call of heuristics and separators solving subMIPs */
549  SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );
550 
551  /* disable cutting plane separation */
553 
554  /* disable expensive presolving */
556 
557  /* use best estimate node selection */
558  if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
559  {
560  SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
561  }
562 
563  /* activate uct node selection at the top of the tree */
564  if( heurdata->useuct && SCIPfindNodesel(subscip, "uct") != NULL && !SCIPisParamFixed(subscip, "nodeselection/uct/stdpriority") )
565  {
566  SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/uct/stdpriority", INT_MAX/2) );
567  }
568 
569  /* use inference branching */
570  if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
571  {
572  SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
573  }
574 
575  /* enable conflict analysis, disable analysis of boundexceeding LPs, and restrict conflict pool */
576  if( !SCIPisParamFixed(subscip, "conflict/enable") )
577  {
578  SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/enable", TRUE) );
579  }
580  if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
581  {
582  SCIP_CALL( SCIPsetCharParam(subscip, "conflict/useboundlp", 'o') );
583  }
584  if( !SCIPisParamFixed(subscip, "conflict/maxstoresize") )
585  {
586  SCIP_CALL( SCIPsetIntParam(subscip, "conflict/maxstoresize", 100) );
587  }
588 
589  /* speed up sub-SCIP by not checking dual LP feasibility */
590  SCIP_CALL( SCIPsetBoolParam(subscip, "lp/checkdualfeas", FALSE) );
591 
592  /* add an objective cutoff */
593  assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip)));
594 
595  if( !SCIPisInfinity(scip, -1.0*SCIPgetLowerbound(scip)) )
596  {
597  cutoff = (1 - heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip);
598  upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
599  cutoff = MIN(upperbound, cutoff);
600  }
601  else
602  {
603  if( SCIPgetUpperbound(scip) >= 0 )
604  cutoff = (1 - heurdata->minimprove) * SCIPgetUpperbound(scip);
605  else
606  cutoff = (1 + heurdata->minimprove) * SCIPgetUpperbound(scip);
607  upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
608  cutoff = MIN(upperbound, cutoff);
609  }
610  SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );
611 
612  /* catch LP events of sub-SCIP */
613  if( !heurdata->uselprows )
614  {
615  assert(eventhdlr != NULL);
616 
617  SCIP_CALL( SCIPtransformProb(subscip) );
618  SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );
619  }
620 
621  /* solve the subproblem */
622  SCIPdebugMsg(scip, "solving DINS sub-MIP with neighborhoodsize %d and maxnodes %" SCIP_LONGINT_FORMAT "\n", heurdata->neighborhoodsize, nsubnodes);
623 
624  /* Errors in solving the subproblem should not kill the overall solving process
625  * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
626  */
627  SCIP_CALL_ABORT( SCIPsolve(subscip) );
628 
629  /* drop LP events of sub-SCIP */
630  if( !heurdata->uselprows )
631  {
632  assert(eventhdlr != NULL);
633 
634  SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );
635  }
636 
637  /* print solving statistics of subproblem if we are in SCIP's debug mode */
639 
640  heurdata->usednodes += SCIPgetNNodes(subscip);
641  nsubsols = SCIPgetNSols(subscip);
642  SCIPdebugMsg(scip, "DINS used %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT " nodes and found %d solutions\n", SCIPgetNNodes(subscip), nsubnodes, nsubsols);
643 
644  /* check, whether a (new) solution was found */
645  if( nsubsols > 0 )
646  {
647  /* check, whether a solution was found; due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */
648  SCIP_CALL( SCIPtranslateSubSols(scip, subscip, heur, subvars, &success, NULL) );
649  if( success )
650  {
651  SCIPdebugMsg(scip, "DINS successfully found new solution\n");
652  *result = SCIP_FOUNDSOL;
653  }
654  }
655 
656  /* free subproblem */
657  SCIPfreeBufferArray(scip, &subvars);
658 
659  return SCIP_OKAY;
660 }
661 
662 
663 /* ---------------- Callback methods of event handler ---------------- */
664 
665 /* exec the event handler
666  *
667  * we interrupt the solution process
668  */
669 static
670 SCIP_DECL_EVENTEXEC(eventExecDins)
671 {
672  SCIP_HEURDATA* heurdata;
673 
674  assert(eventhdlr != NULL);
675  assert(eventdata != NULL);
676  assert(strcmp(SCIPeventhdlrGetName(eventhdlr), EVENTHDLR_NAME) == 0);
677  assert(event != NULL);
678  assert(SCIPeventGetType(event) & SCIP_EVENTTYPE_LPSOLVED);
679 
680  heurdata = (SCIP_HEURDATA*)eventdata;
681  assert(heurdata != NULL);
682 
683  /* interrupt solution process of sub-SCIP */
684  if( SCIPgetNLPs(scip) > heurdata->lplimfac * heurdata->nodelimit )
685  {
686  SCIPdebugMsg(scip, "interrupt after %" SCIP_LONGINT_FORMAT " LPs\n",SCIPgetNLPs(scip));
688  }
689 
690  return SCIP_OKAY;
691 }
692 
693 
694 /*
695  * Callback methods of primal heuristic
696  */
697 
698 /** copy method for primal heuristic plugins (called when SCIP copies plugins) */
699 static
700 SCIP_DECL_HEURCOPY(heurCopyDins)
701 { /*lint --e{715}*/
702  assert(scip != NULL);
703  assert(heur != NULL);
704  assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
705 
706  /* call inclusion method of primal heuristic */
708 
709  return SCIP_OKAY;
710 }
711 
712 /** destructor of primal heuristic to free user data (called when SCIP is exiting) */
713 static
714 SCIP_DECL_HEURFREE(heurFreeDins)
715 { /*lint --e{715}*/
716  SCIP_HEURDATA* heurdata;
717 
718  assert(heur != NULL);
719  assert(scip != NULL);
720 
721  /* get heuristic data */
722  heurdata = SCIPheurGetData(heur);
723  assert(heurdata != NULL);
724 
725  /* free heuristic data */
726  SCIPfreeBlockMemory(scip, &heurdata);
727  SCIPheurSetData(heur, NULL);
728 
729  return SCIP_OKAY;
730 }
731 
732 
733 /** solving process initialization method of primal heuristic (called when branch and bound process is about to begin) */
734 static
735 SCIP_DECL_HEURINITSOL(heurInitsolDins)
736 {
737  SCIP_HEURDATA* heurdata;
738  int i;
739 
740  assert(heur != NULL);
741  assert(scip != NULL);
742 
743  /* get heuristic's data */
744  heurdata = SCIPheurGetData(heur);
745  assert(heurdata != NULL);
746 
747  /* initialize data */
748  heurdata->usednodes = 0;
749  heurdata->lastnsolsfound = 0;
750 
751  /* create flag array */
752  heurdata->deltalength = SCIPgetNBinVars(scip);
753 
754  /* no binvars => no flag array needed */
755  if( heurdata->deltalength > 0 )
756  {
757  SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(heurdata->delta), heurdata->deltalength) );
758  for( i = 0; i < heurdata->deltalength; i++ )
759  heurdata->delta[i] = TRUE;
760  }
761  return SCIP_OKAY;
762 }
763 
764 /** solving process deinitialization method of primal heuristic (called before branch and bound process data is freed) */
765 static
766 SCIP_DECL_HEUREXITSOL(heurExitsolDins)
767 { /*lint --e{715}*/
768  SCIP_HEURDATA* heurdata;
769 
770  assert(heur != NULL);
771  assert(scip != NULL);
772 
773  /* get heuristic data */
774  heurdata = SCIPheurGetData(heur);
775  assert(heurdata != NULL);
776 
777  /* free flag array if exist */
778  if( heurdata->deltalength > 0 )
779  {
780  SCIPfreeBlockMemoryArray(scip, &(heurdata->delta), heurdata->deltalength);
781  }
782  return SCIP_OKAY;
783 }
784 
785 /** execution method of primal heuristic */
786 static
787 SCIP_DECL_HEUREXEC(heurExecDins)
788 { /*lint --e{715}*/
789  SCIP_HEURDATA* heurdata;
790  SCIP* subscip; /* the subproblem created by DINS */
791  SCIP_VAR** vars; /* variables of the original problem */
792  SCIP_VAR** fixedvars;
793  SCIP_Real* fixedvals;
794 
795  SCIP_Longint maxnnodes; /* maximum number of subnodes */
796  SCIP_Longint nsubnodes; /* nodelimit for subscip */
797 
798  SCIP_RETCODE retcode;
799 
800  int nvars; /* number of variables in original SCIP */
801  int nbinvars; /* number of binary variables in original SCIP */
802  int nintvars; /* number of general integer variables in original SCIP */
803  int binfixings;
804  int intfixings;
805 
806  SCIP_Bool success; /* used to store whether new solution was found or not */
807 
808  assert(heur != NULL);
809  assert(scip != NULL);
810  assert(result != NULL);
811  assert(SCIPhasCurrentNodeLP(scip));
812 
813  *result = SCIP_DELAYED;
814 
815  /* do not call heuristic of node was already detected to be infeasible */
816  if( nodeinfeasible )
817  return SCIP_OKAY;
818 
819  /* only call heuristic, if a CIP solution is at hand */
820  if( SCIPgetNSols(scip) <= 0 )
821  return SCIP_OKAY;
822 
823  /* only call heuristic, if an optimal LP solution is at hand */
825  return SCIP_OKAY;
826 
827  /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
829  return SCIP_OKAY;
830 
831  /* get heuristic's data */
832  heurdata = SCIPheurGetData(heur);
833  assert(heurdata != NULL);
834 
835  /* only call heuristic, if enough nodes were processed since last incumbent */
836  if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, SCIPgetBestSol(scip)) < heurdata->nwaitingnodes )
837  return SCIP_OKAY;
838 
839  *result = SCIP_DIDNOTRUN;
840 
841  /* determine the node limit for the current process */
842  maxnnodes = (SCIP_Longint) (heurdata->nodesquot * SCIPgetNNodes(scip));
843 
844  /* reward DINS if it succeeded often */
845  maxnnodes = (SCIP_Longint) (maxnnodes * (1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0) / (SCIPheurGetNCalls(heur) + 1.0)));
846 
847  /* count the setup costs for the sub-MIP as 100 nodes */
848  maxnnodes -= 100 * SCIPheurGetNCalls(heur);
849  maxnnodes += heurdata->nodesofs;
850 
851  /* determine the node limit for the current process */
852  nsubnodes = maxnnodes - heurdata->usednodes;
853  nsubnodes = MIN(nsubnodes , heurdata->maxnodes);
854 
855  /* check whether we have enough nodes left to call sub problem solving */
856  if( nsubnodes < heurdata->minnodes )
857  return SCIP_OKAY;
858 
859  if( SCIPisStopped(scip) )
860  return SCIP_OKAY;
861 
862  /* get required data of the original problem */
863  SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
864  assert(nbinvars <= nvars);
865 
866  /* do not run heuristic if only continuous variables are present */
867  if( nbinvars == 0 && nintvars == 0 )
868  return SCIP_OKAY;
869 
870  /* check whether there is enough time and memory left */
871  SCIP_CALL( SCIPcheckCopyLimits(scip, &success) );
872 
873  /* abort if no time is left or not enough memory to create a copy of SCIP */
874  if( !success )
875  return SCIP_OKAY;
876 
877  assert(vars != NULL);
878 
879  SCIP_CALL( SCIPallocBufferArray(scip, &fixedvars, nbinvars + nintvars) );
880  SCIP_CALL( SCIPallocBufferArray(scip, &fixedvals, nbinvars + nintvars) );
881 
882  /* collect variables that should be fixed in the DINS subproblem */
883  binfixings = intfixings = 0;
884  SCIP_CALL( determineVariableFixings(scip, heur, heurdata, vars, fixedvars, fixedvals, nbinvars, nintvars, &binfixings, &intfixings) );
885 
886  /* abort, if all integer variables were fixed (which should not happen for MIP),
887  * but frequently happens for MINLPs using an LP relaxation */
888  if( binfixings + intfixings == nbinvars + nintvars )
889  goto TERMINATE;
890 
891  /* abort, if the amount of fixed variables is insufficient */
892  if( (binfixings + intfixings) / (SCIP_Real)(MAX(nbinvars + nintvars, 1)) < heurdata->minfixingrate )
893  goto TERMINATE;
894 
895  *result = SCIP_DIDNOTFIND;
896 
897  /* initialize the subproblem */
898  SCIP_CALL( SCIPcreate(&subscip) );
899 
900  retcode = wrapperDins(scip, subscip, heur, heurdata, vars, fixedvars, fixedvals, result, nvars, nbinvars, nintvars, binfixings, intfixings, nsubnodes);
901  SCIP_CALL( SCIPfree(&subscip) );
902 
903  SCIP_CALL( retcode );
904 
905  TERMINATE:
906  SCIPfreeBufferArray(scip, &fixedvals);
907  SCIPfreeBufferArray(scip, &fixedvars);
908 
909  return SCIP_OKAY;
910 }
911 
912 
913 /*
914  * primal heuristic specific interface methods
915  */
916 
917 /** creates the DINS primal heuristic and includes it in SCIP */
919  SCIP* scip /**< SCIP data structure */
920  )
921 {
922  SCIP_HEURDATA* heurdata;
923  SCIP_HEUR* heur;
924 
925  /* create Dins primal heuristic data */
926  SCIP_CALL( SCIPallocBlockMemory(scip, &heurdata) );
927 
928  /* include primal heuristic */
929  SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
931  HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecDins, heurdata) );
932 
933  assert(heur != NULL);
934 
935  /* set non-NULL pointers to callback methods */
936  SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyDins) );
937  SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeDins) );
938  SCIP_CALL( SCIPsetHeurInitsol(scip, heur, heurInitsolDins) );
939  SCIP_CALL( SCIPsetHeurExitsol(scip, heur, heurExitsolDins) );
940 
941  /* add DINS primal heuristic parameters */
942  SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/" HEUR_NAME "/nodesofs",
943  "number of nodes added to the contingent of the total nodes",
944  &heurdata->nodesofs, FALSE, DEFAULT_NODESOFS, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
945  SCIP_CALL( SCIPaddRealParam(scip, "heuristics/" HEUR_NAME "/nodesquot",
946  "contingent of sub problem nodes in relation to the number of nodes of the original problem",
947  &heurdata->nodesquot, FALSE, DEFAULT_NODESQUOT, 0.0, 1.0, NULL, NULL) );
948  SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/" HEUR_NAME "/minnodes",
949  "minimum number of nodes required to start the subproblem",
950  &heurdata->minnodes, FALSE, DEFAULT_MINNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
951  SCIP_CALL( SCIPaddIntParam(scip, "heuristics/" HEUR_NAME "/solnum",
952  "number of pool-solutions to be checked for flag array update (for hard fixing of binary variables)",
953  &heurdata->solnum, FALSE, DEFAULT_SOLNUM, 1, INT_MAX, NULL, NULL) );
954  SCIP_CALL( SCIPaddIntParam(scip, "heuristics/" HEUR_NAME "/neighborhoodsize",
955  "radius (using Manhattan metric) of the incumbent's neighborhood to be searched",
956  &heurdata->neighborhoodsize, FALSE, DEFAULT_NEIGHBORHOODSIZE, 1, INT_MAX, NULL, NULL) );
957  SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/" HEUR_NAME "/maxnodes",
958  "maximum number of nodes to regard in the subproblem",
959  &heurdata->maxnodes,TRUE,DEFAULT_MAXNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
960  SCIP_CALL( SCIPaddRealParam(scip, "heuristics/" HEUR_NAME "/minimprove",
961  "factor by which " HEUR_NAME " should at least improve the incumbent",
962  &heurdata->minimprove, TRUE, DEFAULT_MINIMPROVE, 0.0, 1.0, NULL, NULL) );
963  SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/" HEUR_NAME "/nwaitingnodes",
964  "number of nodes without incumbent change that heuristic should wait",
965  &heurdata->nwaitingnodes, TRUE, DEFAULT_NWAITINGNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
966 
967  SCIP_CALL( SCIPaddRealParam(scip, "heuristics/" HEUR_NAME "/lplimfac",
968  "factor by which the limit on the number of LP depends on the node limit",
969  &heurdata->lplimfac, TRUE, DEFAULT_LPLIMFAC, 1.0, SCIP_REAL_MAX, NULL, NULL) );
970 
971  SCIP_CALL( SCIPaddRealParam(scip, "heuristics/" HEUR_NAME "/minfixingrate",
972  "minimum percentage of integer variables that have to be fixable",
973  &heurdata->minfixingrate, FALSE, DEFAULT_MINFIXINGRATE, 0.0, 1.0, NULL, NULL) );
974 
975  SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/uselprows",
976  "should subproblem be created out of the rows in the LP rows?",
977  &heurdata->uselprows, TRUE, DEFAULT_USELPROWS, NULL, NULL) );
978 
979  SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/copycuts",
980  "if uselprows == FALSE, should all active cuts from cutpool be copied to constraints in subproblem?",
981  &heurdata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );
982 
983  SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/useuct",
984  "should uct node selection be used at the beginning of the search?",
985  &heurdata->useuct, TRUE, DEFAULT_USEUCT, NULL, NULL) );
986 
987  SCIP_CALL( SCIPaddIntParam(scip, "heuristics/" HEUR_NAME "/bestsollimit",
988  "limit on number of improving incumbent solutions in sub-CIP",
989  &heurdata->bestsollimit, FALSE, DEFAULT_BESTSOLLIMIT, -1, INT_MAX, NULL, NULL) );
990 
991  return SCIP_OKAY;
992 }
enum SCIP_Result SCIP_RESULT
Definition: type_result.h:61
SCIP_RETCODE SCIPsetHeurExitsol(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEUREXITSOL((*heurexitsol)))
Definition: scip_heur.c:242
#define SCIPfreeBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:110
int SCIPgetNIntVars(SCIP *scip)
Definition: scip_prob.c:2082
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
SCIP_RETCODE SCIPchgVarLbGlobal(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4945
#define SCIP_EVENTTYPE_LPSOLVED
Definition: type_event.h:101
SCIP_RETCODE SCIPsetSeparating(SCIP *scip, SCIP_PARAMSETTING paramsetting, SCIP_Bool quiet)
Definition: scip_param.c:979
#define NULL
Definition: def.h:267
#define SCIPallocBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:93
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
public methods for SCIP parameter handling
#define DEFAULT_LPLIMFAC
Definition: heur_dins.c:77
static SCIP_RETCODE wrapperDins(SCIP *scip, SCIP *subscip, SCIP_HEUR *heur, SCIP_HEURDATA *heurdata, SCIP_VAR **vars, SCIP_VAR **fixedvars, SCIP_Real *fixedvals, SCIP_RESULT *result, int nvars, int nbinvars, int nintvars, int binfixings, int intfixings, SCIP_Longint nsubnodes)
Definition: heur_dins.c:456
#define HEUR_FREQ
Definition: heur_dins.c:66
public methods for node selector plugins
public methods for memory management
SCIP_Real SCIPgetCutoffbound(SCIP *scip)
#define EVENTHDLR_NAME
Definition: heur_dins.c:92
SCIP_Real SCIPvarGetLbGlobal(SCIP_VAR *var)
Definition: var.c:18079
#define SCIP_MAXSTRLEN
Definition: def.h:288
SCIP_Longint SCIPheurGetNBestSolsFound(SCIP_HEUR *heur)
Definition: heur.c:1599
SCIP_Longint SCIPgetNSolsFound(SCIP *scip)
#define DEFAULT_NODESOFS
Definition: heur_dins.c:72
int SCIPcalcMemGrowSize(SCIP *scip, int num)
Definition: scip_mem.c:139
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
public solving methods
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
static SCIP_RETCODE determineVariableFixings(SCIP *scip, SCIP_HEUR *heur, SCIP_HEURDATA *heurdata, SCIP_VAR **vars, SCIP_VAR **fixedvars, SCIP_Real *fixedvals, int nbinvars, int nintvars, int *binfixings, int *intfixings)
Definition: heur_dins.c:206
#define EVENTHDLR_DESC
Definition: heur_dins.c:93
SCIP_Real SCIPvarGetRootSol(SCIP_VAR *var)
Definition: var.c:13351
SCIP_RETCODE SCIPgetVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars, int *nbinvars, int *nintvars, int *nimplvars, int *ncontvars)
Definition: scip_prob.c:1866
SCIP_SOL ** SCIPgetSols(SCIP *scip)
Definition: scip_sol.c:2119
#define FALSE
Definition: def.h:94
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3074
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:324
SCIP_RETCODE SCIPaddLongintParam(SCIP *scip, const char *name, const char *desc, SCIP_Longint *valueptr, SCIP_Bool isadvanced, SCIP_Longint defaultvalue, SCIP_Longint minvalue, SCIP_Longint maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:111
#define DEFAULT_MAXNODES
Definition: heur_dins.c:73
SCIP_RETCODE SCIPcopyLimits(SCIP *sourcescip, SCIP *targetscip)
Definition: scip_copy.c:3296
int SCIPsnprintf(char *t, int len, const char *s,...)
Definition: misc.c:10877
#define DEFAULT_MINFIXINGRATE
Definition: heur_dins.c:78
#define TRUE
Definition: def.h:93
#define SCIPdebug(x)
Definition: pub_message.h:93
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
methods commonly used by primal heuristics
#define HEUR_DISPCHAR
Definition: heur_dins.c:64
SCIP_RETCODE SCIPsetPresolving(SCIP *scip, SCIP_PARAMSETTING paramsetting, SCIP_Bool quiet)
Definition: scip_param.c:953
SCIP_BRANCHRULE * SCIPfindBranchrule(SCIP *scip, const char *name)
Definition: scip_branch.c:297
struct SCIP_HeurData SCIP_HEURDATA
Definition: type_heur.h:77
public methods for problem variables
static SCIP_DECL_HEURFREE(heurFreeDins)
Definition: heur_dins.c:714
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
SCIP_RETCODE SCIPincludeHeurBasic(SCIP *scip, SCIP_HEUR **heur, const char *name, const char *desc, char dispchar, int priority, int freq, int freqofs, int maxdepth, SCIP_HEURTIMING timingmask, SCIP_Bool usessubscip, SCIP_DECL_HEUREXEC((*heurexec)), SCIP_HEURDATA *heurdata)
Definition: scip_heur.c:117
SCIP_RETCODE SCIPtranslateSubSols(SCIP *scip, SCIP *subscip, SCIP_HEUR *heur, SCIP_VAR **subvars, SCIP_Bool *success, int *solindex)
Definition: scip_copy.c:1448
void * SCIPhashmapGetImage(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3261
#define SCIP_LONGINT_MAX
Definition: def.h:159
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
SCIP_RETCODE SCIPcreate(SCIP **scip)
Definition: scip_general.c:307
void SCIPheurSetData(SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur.c:1374
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
public methods for SCIP variables
SCIP_RETCODE SCIPchgVarUbGlobal(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:5034
#define SCIPdebugMsg
Definition: scip_message.h:78
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPprintStatistics(SCIP *scip, FILE *file)
static SCIP_DECL_HEURINITSOL(heurInitsolDins)
Definition: heur_dins.c:735
SCIP_Real SCIPfeasCeil(SCIP *scip, SCIP_Real val)
public methods for numerical tolerances
SCIP_Real SCIPfeasFloor(SCIP *scip, SCIP_Real val)
public methods for querying solving statistics
const char * SCIPgetProbName(SCIP *scip)
Definition: scip_prob.c:1067
SCIP_Real SCIPvarGetUbGlobal(SCIP_VAR *var)
Definition: var.c:18089
SCIP_RETCODE SCIPsetHeurInitsol(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINITSOL((*heurinitsol)))
Definition: scip_heur.c:226
SCIP_RETCODE SCIPsolve(SCIP *scip)
Definition: scip_solve.c:2486
const char * SCIPheurGetName(SCIP_HEUR *heur)
Definition: heur.c:1453
#define SCIPerrorMessage
Definition: pub_message.h:64
SCIP_Bool SCIPisParamFixed(SCIP *scip, const char *name)
Definition: scip_param.c:219
SCIP_RETCODE SCIPaddCons(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:2770
SCIP_RETCODE SCIPsetHeurFree(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURFREE((*heurfree)))
Definition: scip_heur.c:178
#define HEUR_NAME
Definition: heur_dins.c:62
public methods for event handler plugins and event handlers
#define DEFAULT_NEIGHBORHOODSIZE
Definition: heur_dins.c:80
SCIP_RETCODE SCIPsetBoolParam(SCIP *scip, const char *name, SCIP_Bool value)
Definition: scip_param.c:429
BMS_BLKMEM * SCIPblkmem(SCIP *scip)
Definition: scip_mem.c:57
static SCIP_DECL_HEUREXITSOL(heurExitsolDins)
Definition: heur_dins.c:766
struct SCIP_EventData SCIP_EVENTDATA
Definition: type_event.h:173
void SCIPhashmapFree(SCIP_HASHMAP **hashmap)
Definition: misc.c:3108
#define DEFAULT_NODESQUOT
Definition: heur_dins.c:76
#define REALABS(x)
Definition: def.h:197
SCIP_Real SCIPvarGetLPSol(SCIP_VAR *var)
Definition: var.c:18453
public methods for problem copies
#define SCIP_CALL(x)
Definition: def.h:380
SCIP_Real SCIPgetLowerbound(SCIP *scip)
#define HEUR_FREQOFS
Definition: heur_dins.c:67
SCIP_Longint SCIPheurGetNCalls(SCIP_HEUR *heur)
Definition: heur.c:1579
SCIP_Bool SCIPhasCurrentNodeLP(SCIP *scip)
Definition: scip_lp.c:83
public methods for primal heuristic plugins and divesets
public methods for constraint handler plugins and constraints
SCIP_RETCODE SCIPincludeHeurDins(SCIP *scip)
Definition: heur_dins.c:918
static SCIP_DECL_HEURCOPY(heurCopyDins)
Definition: heur_dins.c:700
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
public data structures and miscellaneous methods
#define DEFAULT_BESTSOLLIMIT
Definition: heur_dins.c:87
#define SCIP_Bool
Definition: def.h:91
SCIP_RETCODE SCIPcatchEvent(SCIP *scip, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:286
SCIP_LPSOLSTAT SCIPgetLPSolstat(SCIP *scip)
Definition: scip_lp.c:168
#define DEFAULT_MINNODES
Definition: heur_dins.c:74
SCIP_EVENTTYPE SCIPeventGetType(SCIP_EVENT *event)
Definition: event.c:1030
#define DEFAULT_USELPROWS
Definition: heur_dins.c:82
SCIP_RETCODE SCIPsetObjlimit(SCIP *scip, SCIP_Real objlimit)
Definition: scip_prob.c:1422
static void computeIntegerVariableBounds(SCIP *scip, SCIP_VAR *var, SCIP_Real *lbptr, SCIP_Real *ubptr)
Definition: heur_dins.c:132
static SCIP_RETCODE reboundIntegerVariables(SCIP *scip, SCIP *subscip, SCIP_VAR **vars, SCIP_VAR **subvars, int nbinvars, int nintvars)
Definition: heur_dins.c:336
#define MIN(x, y)
Definition: def.h:243
SCIP_RETCODE SCIPsetIntParam(SCIP *scip, const char *name, int value)
Definition: scip_param.c:487
#define DEFAULT_COPYCUTS
Definition: heur_dins.c:84
#define HEUR_PRIORITY
Definition: heur_dins.c:65
SCIP_RETCODE SCIPdropEvent(SCIP *scip, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:320
int SCIPgetNSols(SCIP *scip)
Definition: scip_sol.c:2070
Constraint handler for linear constraints in their most general form, .
SCIP_Bool SCIPisInfinity(SCIP *scip, SCIP_Real val)
static SCIP_DECL_HEUREXEC(heurExecDins)
Definition: heur_dins.c:787
int SCIPgetNBinVars(SCIP *scip)
Definition: scip_prob.c:2037
public methods for the LP relaxation, rows and columns
SCIP_RETCODE SCIPsetCharParam(SCIP *scip, const char *name, char value)
Definition: scip_param.c:661
int SCIPgetNVars(SCIP *scip)
Definition: scip_prob.c:1992
#define SCIP_REAL_MAX
Definition: def.h:174
static SCIP_RETCODE addLocalBranchingConstraint(SCIP *scip, SCIP *subscip, SCIP_VAR **subvars, SCIP_HEURDATA *heurdata)
Definition: heur_dins.c:374
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
#define SCIP_LONGINT_FORMAT
Definition: def.h:165
public methods for branching rule plugins and branching
DINS primal heuristic.
#define DEFAULT_SOLNUM
Definition: heur_dins.c:81
public methods for managing events
#define HEUR_TIMING
Definition: heur_dins.c:69
general public methods
#define DEFAULT_MINIMPROVE
Definition: heur_dins.c:75
#define MAX(x, y)
Definition: def.h:239
SCIP_Real SCIPgetLPObjval(SCIP *scip)
Definition: scip_lp.c:247
SCIP_SOL * SCIPgetBestSol(SCIP *scip)
Definition: scip_sol.c:2169
public methods for solutions
int SCIPgetNConss(SCIP *scip)
Definition: scip_prob.c:3042
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
public methods for message output
SCIP_NODESEL * SCIPfindNodesel(SCIP *scip, const char *name)
Definition: scip_nodesel.c:234
SCIP_RETCODE SCIPcopyLargeNeighborhoodSearch(SCIP *sourcescip, SCIP *subscip, SCIP_HASHMAP *varmap, const char *suffix, SCIP_VAR **fixedvars, SCIP_Real *fixedvals, int nfixedvars, SCIP_Bool uselprows, SCIP_Bool copycuts, SCIP_Bool *success, SCIP_Bool *valid)
Definition: heuristics.c:951
SCIP_HEUR * SCIPgetSolHeur(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1540
#define SCIP_Real
Definition: def.h:173
SCIP_Bool SCIPisStopped(SCIP *scip)
Definition: scip_general.c:718
public methods for message handling
#define SCIP_Longint
Definition: def.h:158
#define HEUR_MAXDEPTH
Definition: heur_dins.c:68
SCIP_RETCODE SCIPcheckCopyLimits(SCIP *sourcescip, SCIP_Bool *success)
Definition: scip_copy.c:3253
SCIP_VARTYPE SCIPvarGetType(SCIP_VAR *var)
Definition: var.c:17585
SCIP_RETCODE SCIPtransformProb(SCIP *scip)
Definition: scip_solve.c:222
SCIP_RETCODE SCIPsetHeurCopy(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURCOPY((*heurcopy)))
Definition: scip_heur.c:162
#define DEFAULT_NWAITINGNODES
Definition: heur_dins.c:79
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPsumepsilon(SCIP *scip)
SCIP_RETCODE SCIPinterruptSolve(SCIP *scip)
Definition: scip_solve.c:3417
SCIP_Real SCIPgetUpperbound(SCIP *scip)
public methods for primal heuristics
#define SCIP_CALL_ABORT(x)
Definition: def.h:359
SCIP_HEURDATA * SCIPheurGetData(SCIP_HEUR *heur)
Definition: heur.c:1364
SCIP_Longint SCIPgetNNodes(SCIP *scip)
SCIP_Longint SCIPgetNLPs(SCIP *scip)
public methods for global and local (sub)problems
#define DEFAULT_USEUCT
Definition: heur_dins.c:88
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1217
#define HEUR_DESC
Definition: heur_dins.c:63
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPsetSubscipsOff(SCIP *scip, SCIP_Bool quiet)
Definition: scip_param.c:904
static SCIP_DECL_EVENTEXEC(eventExecDins)
Definition: heur_dins.c:670
#define HEUR_USESSUBSCIP
Definition: heur_dins.c:70
SCIP_RETCODE SCIPsetLongintParam(SCIP *scip, const char *name, SCIP_Longint value)
Definition: scip_param.c:545
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPfree(SCIP **scip)
Definition: scip_general.c:339
SCIP_Longint SCIPgetSolNodenum(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1513
memory allocation routines