cons_linear.c
Go to the documentation of this file.
27 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
57 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
99 #define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
100 #define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
101 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
102 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
103 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
105 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
106 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
107 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
108 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
110 #define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
120 #define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
121 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
122 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
124 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
125 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
126 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
127 #define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
128 #define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
130 #define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
132 #define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
134 #define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
136 #define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
138 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
140 #define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
142 #define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
143 #define DEFAULT_SIMPLIFYINEQUALITIES TRUE /**< should presolving try to simplify inequalities */
145 #define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
146 #define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
148 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
151 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
154 #define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
157 #define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
161 #define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
163 #define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
164 #define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
169 #define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
176 #define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
177 #define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
180 #define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of expressions constraints */
182 /* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
189 {
194 QUAD_MEMBER(SCIP_Real minactivity); /**< minimal value w.r.t. the variable's local bounds for the constraint's
196 QUAD_MEMBER(SCIP_Real maxactivity); /**< maximal value w.r.t. the variable's local bounds for the constraint's
202 QUAD_MEMBER(SCIP_Real glbminactivity); /**< minimal value w.r.t. the variable's global bounds for the constraint's
204 QUAD_MEMBER(SCIP_Real glbmaxactivity); /**< maximal value w.r.t. the variable's global bounds for the constraint's
206 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
208 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
210 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
211 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
219 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
220 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
221 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
222 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
223 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
224 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
225 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
226 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
227 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
228 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
229 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
230 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
231 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
232 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
233 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
234 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
241 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
253 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
256 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
261 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
263 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
264 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
265 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
266 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
281 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
282 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
284 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
286 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
287 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
291 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
298 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
299 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
300 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
302 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
303 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
305 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
306 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
309 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
311 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
314 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
317 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
319 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
322 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
325 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
327 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
328 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
351 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
366 } asbits;
368 } val;
389 )
431 /** constructs an inference information out of a propagation rule and a position number, returns info as int */
452 )
463 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
492 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
548 {
582 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
608 SCIPwarningMessage(scip, "Try to add already known upgrade message for constraint handler %s.\n", conshdlrname);
631 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
638 assert(0 <= i && i <= conshdlrdata->nlinconsupgrades);
649 /** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
682 /** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
776 assert(consdata->eventdata[pos]->cons == cons);
924 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
966 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1038 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1122 {
1124 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1157 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1279 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1325 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1327 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1352 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1354 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1379 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1381 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1382 SCIPquadprecSumQD(consdata->glbminactivity, consdata->glbminactivity, consdata->vals[i] * bound);
1406 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1408 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1409 SCIPquadprecSumQD(consdata->glbmaxactivity, consdata->glbmaxactivity, consdata->vals[i] * bound);
1440 }
1464 {
1472 /** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1493 {
1569 {
1621 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1673 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1675 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1729 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1731 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1799 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1827 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1852 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1858 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1861 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1867 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1870 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1885 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1891 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1894 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1900 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1903 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1958 /* update the activity, if the current value is valid and there was a change in the finite part */
2011 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2020 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
2022 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2023 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2036 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2045 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2047 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2048 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2060 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2068 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2070 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2071 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2073 }
2083 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2091 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2093 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2094 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2096 }
2098 /** updates minimum and maximum activity and maximum absolute value for coefficient addition */
2105 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2141 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2142 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2143 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2144 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2148 /** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2155 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2198 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2199 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2200 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2201 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2205 /** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2213 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2293 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
2299 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2325 {
2398 /** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2399 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2412 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2416 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2421 assert(posinf >= 0);
2443 /* if we have neg. huge contributions or do not need a good relaxation, we just return -infty as minactivity */
2475 /* we have no infinite and no neg. huge contributions, but pos. huge contributions; a feasible relaxation of the
2476 * minactivity is given by adding the number of positive huge contributions times the huge value
2493 /** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2494 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2507 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2511 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2516 assert(posinf >= 0);
2538 /* if we have pos. huge contributions or do not need a good relaxation, we just return +infty as maxactivity */
2570 /* we have no infinite and no pos. huge contributions, but neg. huge contributions; a feasible relaxation of the
2571 * maxactivity is given by subtracting the number of negative huge contributions times the huge value
2601 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2602 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2731 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2732 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2780 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2781 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2818 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2822 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2823 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2860 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2872 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2873 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2878 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2879 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2934 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2935 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2940 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2941 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2983 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2984 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2990 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2998 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
3031 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
3032 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3038 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
3046 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3113 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3120 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3209 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3248 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3304 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3305 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3339 {
3389 * sorts variables of the remaining problem by binaries, integers, implicit integers, and continuous variables,
3512 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3537 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3558 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3642 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3667 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3688 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3736 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3851 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3857 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3948 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
3960 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4026 assert(0 <= pos && pos < consdata->nvars);
4108 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4119 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4127 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4149 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4161 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4198 {
4223 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4228 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4231 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4303 if( !SCIPisInfinity(scip, consdata->lhs) && SCIPisFeasZero(scip, consdata->lhs) != SCIPisFeasZero(scip, consdata->lhs/maxabsval) )
4305 if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasZero(scip, consdata->rhs) != SCIPisFeasZero(scip, consdata->rhs/maxabsval) )
4321 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4348 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4360 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4386 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4395 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4448 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4468 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4517 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4520 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4524 SCIPdebugMsg(scip, "detected infeasibility of constraint after scaling with gcd=%" SCIP_LONGINT_FORMAT ":\n", gcd);
4532 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4605 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4678 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4679 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4681 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4892 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4911 /** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4912 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4913 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4921 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4950 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4951 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4956 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4969 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4974 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4977 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4991 if( (reasonisrhs && !isminsettoinfinity && ismintight) || (!reasonisrhs && !ismaxsettoinfinity && ismaxtight) ) /*lint !e644*/
4998 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
5053 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
5055 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
5059 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
5061 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
5081 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
5086 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
5094 /** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
5095 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
5096 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5103 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5118 nvars = consdata->nvars;
5135 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5141 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5151 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5153 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5183 {
5210 /** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5221 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5222 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5263 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5264 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5273 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5274 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5283 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5295 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5306 /** analyzes conflicting bounds on given constraint, and adds conflict constraint to problem */
5315 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5321 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5369 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5393 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5395 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newub);
5400 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5439 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5463 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5465 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newlb);
5470 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5506 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5566 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5569 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5581 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5625 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5637 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5673 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5676 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5688 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5731 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5743 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5775 /** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5798 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5804 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5818 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5819 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5904 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5909 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5910 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5928 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5957 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5960 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5961 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5964 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5974 /* partition the variables, do not change the order of collection, because it might be used later on */
5978 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6006 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
6020 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
6021 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
6028 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
6032 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6045 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
6084 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6143 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6144 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6146 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6147 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6149 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6151 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6155 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6160 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6165 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6182 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6190 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6259 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6267 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6272 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6300 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6321 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6333 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6415 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6422 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6427 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6479 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6500 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6522 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6534 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6641 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6662 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6670 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6673 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6695 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6700 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6709 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6730 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6780 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6795 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6800 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6826 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6869 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6890 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6901 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6908 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6909 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6925 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6942 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6957 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6958 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6974 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6992 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
7003 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
7010 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
7011 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
7027 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7043 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
7058 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
7059 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
7075 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7095 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7184 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &ismintight, &ismaxtight,
7189 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7190 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7200 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7208 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7212 * note: it might happen that integer variables become binary during bound tightening at the root node
7223 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7247 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7254 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7262 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7274 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7275 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7311 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7333 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7349 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7362 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7411 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7465 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7501 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7502 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7544 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7547 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7572 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7626 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
7638 0.0, consdata->nvars, consdata->vars, consdata->vals, NULL, consdata->lhs, consdata->rhs, SCIP_EXPRCURV_LINEAR) );
7651 /** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7659 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7681 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7694 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7748 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7793 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7832 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7842 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
7847 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7858 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7867 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7869 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7872 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7930 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7967 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7968 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7973 * and also add the binary to binary implication also for non-successive variables for which the same argument
7978 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7981 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7982 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7987 * and also add the binary to binary implication also for non-successive variables for which the same argument
7994 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7995 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
8000 * and also add the binary to binary implication also for non-successive variables for which the
8005 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
8008 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
8009 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
8014 * and also add the binary to binary implication also for non-successive variables for which the same argument
8021 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
8029 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
8073 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
8074 * maximal absolute contribution and also only if this variable would force all other variables to their bound
8082 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
8086 * "seem to", because there are rare situations in which variables may actually not be sorted by type, even though consdataSort has been called
8087 * this situation can occur if, e.g., the type of consdata->vars[1] has been changed to binary, but the corresponding variable event has
8088 * not been executed yet, because it is the eventExecLinear() which marks the variables array as unsorted (set consdata->indexsorted to FALSE),
8090 * we assume that in this situation the below code may be executed in a future presolve round, after the variable events have been executed
8106 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8108 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8109 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8113 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8176 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8177 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8180 if( finiterhs && finiteminact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbminactivity), consdata->rhs - maxabscontrib) )
8192 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8199 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8211 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8217 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8218 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8221 if( finitelhs && finitemaxact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbmaxactivity), consdata->lhs - maxabscontrib) )
8233 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8240 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8252 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8261 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8266 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8315 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8317 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8318 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8322 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8325 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8362 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8397 #ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8398 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8436 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8473 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8546 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8547 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8587 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8598 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8626 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8706 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8725 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8747 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8758 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8788 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8865 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8904 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8950 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8951 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8982 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
9050 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
9084 /** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
9091 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9100 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9108 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
9109 * variables are set to their "worst" bound. If all variables which are not surely non-redundant cannot make
9110 * the lhs/rhs redundant, even if they are set to their "best" bound, they can be removed from the constraint.
9111 * E.g., for binary variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one
9112 * suffices to fulfill the inequality, whereas the x_i do not contribute to feasibility and can be removed.
9114 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9127 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9129 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9131 SCIP_Bool isminacttight; /* are all contributions to the minactivity non-huge or non-contradicting? */
9132 SCIP_Bool ismaxacttight; /* are all contributions to the maxactivity non-huge or non-contradicting? */
9167 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9190 SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs) )
9210 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9216 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9231 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9248 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9253 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9262 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9297 SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs) )
9317 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9323 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9338 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9355 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9360 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9369 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9412 /* if the lhs is finite, we will check in the following whether the not non-redundant variables can make lhs feasible;
9413 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9414 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9415 * (<= the exact minactivity), and we might falsely claim variables to be redundant in the following
9418 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || !isminacttight) )
9421 /* if the rhs is finite, we will check in the following whether the not non-redundant variables can make rhs feasible;
9422 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9423 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9424 * (>= the exact maxactivity), and we might falsely claim variables to be redundant in the following
9427 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || !ismaxacttight) )
9431 * surely non-redundant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9436 /* check if the constraint contains variables which are redundant. The reasoning is the following:
9437 * Each non-redundant variable can make the lhs/rhs feasible with a deviation of only one in the bound.
9469 SCIPisLT(scip, minactivity + val, consdata->lhs) || SCIPisGT(scip, maxactivity - val, consdata->rhs) )
9473 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9483 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9486 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9497 SCIPisLT(scip, minactivity - val, consdata->lhs) || SCIPisGT(scip, maxactivity + val, consdata->rhs) )
9499 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9509 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9512 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9520 /* the following update step is needed in every iteration cause otherwise it is possible that the surely none-
9522 * e.g. y_1 + 16y_2 >= 25, y1 with bounds [9,12], y2 with bounds [0,2], minactivity would be 9, it follows that
9523 * y_2 is surely not redundant and y_1 is redundant so we would first delete y1 and without updating the sides
9531 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9538 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9550 /** processes equality with only one variable by fixing the variable and deleting the constraint */
9606 /** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9637 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9664 /** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9712 /** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9713 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9716 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9772 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9776 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9777 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9784 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9785 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9791 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9792 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9798 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9849 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9894 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9895 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9943 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9946 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9953 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9958 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9961 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9965 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9976 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9995 /* if all coefficients and variables are integral, the right hand side must also be integral */
10008 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
10045 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
10046 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
10049 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
10053 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
10097 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
10103 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
10104 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
10118 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10128 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
10145 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
10149 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
10154 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10160 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
10161 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10175 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10176 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10191 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10195 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10199 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10218 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10230 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10243 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10248 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10259 /** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10297 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10335 /** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10364 /* check if the linear equality constraints does not have more variables than the objective function */
10370 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10376 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10388 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10408 /** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10418 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10436 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10441 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10452 /** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10483 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10492 /* There are no variables in the objective function and in the constraint. Thus, the constraint is redundant or proves
10493 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10498 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10516 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10528 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10537 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10550 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10562 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10571 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10634 /** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10653 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10660 /** check if \f$lhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$,
10661 * check if \f$rhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$
10683 *minval = (side - maxresactivity)/val;
10705 /** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10738 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10750 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10757 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10759 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10761 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10762 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10764 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10765 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10777 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10809 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10815 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10833 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10837 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10841 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10845 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10847 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10852 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10854 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10857 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10859 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10873 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10886 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10901 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10909 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10921 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10922 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10929 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10932 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10946 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10961 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10968 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10977 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10978 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10984 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10987 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
11025 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
11033 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
11106 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
11123 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
11126 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
11128 /* if the multi-aggregate bestvar is integer, we need to convert implicit integers to integers because
11137 /* If the multi-aggregation was not infeasible, then setting implicit integers to integers should not
11150 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
11151 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
11152 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
11161 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11389 /** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11390 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11423 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11429 * 1. lhs <= a^Tx <= rhs, x binary, lhs > 0, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs,
11525 /** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11529 * for one-sided constraints there are several different coefficient reduction steps which will be applied
11531 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11537 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11541 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11623 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11630 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11671 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11678 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11692 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11702 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11730 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11734 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11735 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11736 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11741 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11742 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11745 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11748 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11749 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11760 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11772 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11773 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11785 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11812 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11903 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11904 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11933 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11938 numericsok = REALABS(maxact) < MAXACTVAL && REALABS(maxactsub) < MAXACTVAL && REALABS(minact) < MAXACTVAL &&
11941 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11942 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11993 assert((hasrhs && SCIPisFeasLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) ||
11997 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
12097 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12184 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12210 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12211 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12263 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12279 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12280 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12284 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12329 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12422 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12522 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12539 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12544 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12566 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12567 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12588 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12597 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12605 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12606 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12623 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12634 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12668 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12676 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12732 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12734 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12765 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12773 /** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12775 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12777 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12778 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12787 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12788 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12791 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12792 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12793 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12807 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12833 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12869 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12894 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12962 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12967 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12998 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
13051 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
13071 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
13106 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13190 assert(consdata->indexsorted);
13203 /** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13204 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13218 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13228 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13241 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13283 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13344 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13345 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13380 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13411 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13425 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13437 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13449 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13454 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13494 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13508 uint64_t negsignature0;
13558 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13597 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13624 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13625 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13627 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13628 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13630 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13631 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13633 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13634 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13649 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13651 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13653 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13655 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13656 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13657 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13659 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13660 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13661 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13663 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13664 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13665 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13799 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13802 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13821 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13862 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13874 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13877 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13888 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13901 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13908 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13919 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13931 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13938 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13949 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13962 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13969 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13980 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13992 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14009 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14024 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14046 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
14061 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
14064 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
14096 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
14097 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
14143 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
14154 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
14182 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14216 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14313 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14375 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14376 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14377 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14408 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14422 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14423 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14424 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14426 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14427 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14428 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14429 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14430 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14432 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14433 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14434 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14435 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14436 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14437 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14438 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14439 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14440 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14442 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14444 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14471 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14493 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14558 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14559 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14586 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14595 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14596 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14623 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14638 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14641 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14674 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14708 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14709 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14722 * This is because then, the value of the variable is either determined by one of its bounds or
14744 /* copy the variable array since this array might change during the curse of this algorithm */
14766 /* Initialize isimplint array: variable may be implicit integer if rounded to their best bound they are integral.
14782 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14798 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14832 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14884 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14894 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14898 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14904 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14973 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14991 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14992 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
15045 * if variable is cost neutral and only upper bounded non-positively or negative largest bound to make
15048 if( ( SCIPisPositive(scip, obj) || SCIPisPositive(scip, SCIPvarGetUbGlobal(var)) || !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) )
15055 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
15058 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
15074 * if variable is cost neutral and only lower bounded non-negatively or positive smallest bound to make
15077 if( ( SCIPisPositive(scip, -obj) || SCIPisPositive(scip, -SCIPvarGetLbGlobal(var)) || !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) )
15084 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
15087 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
15115 /* we can only conclude implicit integrality if the variable appears in no other constraint */
15125 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
15131 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
15177 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15216 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15262 SCIP_CALL( SCIPgetSymActiveVariables(scip, symtype, &vars, &vals, &nlocvars, &constant, SCIPisTransformed(scip)) );
15310 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15360 /** deinitialization method of constraint handler (called before transformed problem is freed) */
15403 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15420 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15422 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15423 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15424 * Similarly, if specialized constraints were created through the API, these are currently not present.
15445 }
15510 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15530 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15549 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15561 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15637 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15688 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15691 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15723 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15748 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15757 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15764 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15785 ngoodconss = 0;
15810 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15826 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15827 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15833 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15858 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15898 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15899 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
16017 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
16020 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
16030 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
16031 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
16034 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
16040 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
16093 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16116 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
16159 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16174 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16250 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16302 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
16304 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16306 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16337 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16351 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16359 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16487 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16500 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16542 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16552 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
16554 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16556 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16561 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
16563 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16572 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisGE(scip, minactivity, consdata->lhs) )
16574 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16582 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16611 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16654 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16682 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss) );
16686 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16688 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss) );
16701 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16708 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16740 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16746 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16747 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16790 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16793 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16799 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16812 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16816 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16827 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16828 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16830 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16843 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16870 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16886 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16904 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16931 {
17010 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
17011 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
17012 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
17022 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
17079 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
17160 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
17173 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
17214 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17250 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17259 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17260 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17270 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17303 /** constraint method of constraint handler which returns the number of variables (if possible) */
17319 /** constraint handler method which returns the permutation symmetry detection graph of a constraint */
17328 /** constraint handler method which returns the signed permutation symmetry detection graph of a constraint */
17403 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17408 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17421 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17425 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17464 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17473 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17504 /* if the variable is binary but not fixed it had to become binary due to this global change */
17505 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17517 /* for presolving it only matters if a variable type changed from continuous to some kind of integer */
17518 consdata->presolved = (consdata->presolved && SCIPeventGetOldtype(event) < SCIP_VARTYPE_CONTINUOUS);
17520 /* the ordering is preserved if the type changes from something different to binary to binary but SCIPvarIsBinary() is true */
17521 consdata->indexsorted = (consdata->indexsorted && SCIPeventGetNewtype(event) == SCIP_VARTYPE_BINARY && SCIPvarIsBinary(var));
17561 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17593 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17594 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17597 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17641 * (unless the expression is a variable or a constant or a constant*variable, but these are simplified away in cons_nonlinear)
17652 lhs = SCIPisInfinity(scip, -SCIPgetLhsNonlinear(cons)) ? -SCIPinfinity(scip) : (SCIPgetLhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17653 rhs = SCIPisInfinity(scip, SCIPgetRhsNonlinear(cons)) ? SCIPinfinity(scip) : (SCIPgetRhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17669 SCIP_CALL( addCoef(scip, upgdconss[0], SCIPgetVarExprVar(SCIPexprGetChildren(expr)[i]), SCIPgetCoefsExprSum(expr)[i]) );
17672 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17704 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17734 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17736 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17739 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17744 SCIP_CALL( SCIPsetConshdlrGetSignedPermsymGraph(scip, conshdlr, consGetSignedPermsymGraphLinear) );
17749 SCIP_CALL( SCIPincludeConsUpgradeNonlinear(scip, upgradeConsNonlinear, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17755 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17756 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17791 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17792 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17795 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17796 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17799 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17803 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17823 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17826 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17830 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17834 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17838 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17846 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17859 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17867 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17871 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17919 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17920 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17931 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17960 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17962 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17992 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18008 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18016 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18030 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
18040 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
18056 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
18066 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
18109 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18119 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
18126 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
18127 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
18131 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
18160 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
18163 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
18165 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
18175 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
18176 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
18201 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18222 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18227 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
18234 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
18255 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18258 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18272 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18302 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18324 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18332 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18353 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18363 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18379 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18389 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18439 /** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18442 * @note This method may only be called during problem creation stage for an original constraint and variable.
18444 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18468 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18470 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18488 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18510 * @note This method may only be called during problem creation stage for an original constraint and variable.
18512 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18533 )
18640 /** gets the array of variables in the linear constraint; the user must not modify this array! */
18664 /** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18690 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18804 /** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18830 /** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18873 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18895 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18904 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18915 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18920 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
19038 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
19050 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
19061 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
19073 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
19088 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4229
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1422
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18712
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1692
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:578
Definition: type_result.h:42
Definition: type_result.h:46
Definition: struct_cons.h:291
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6839
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1464
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15945
Definition: type_cons.h:87
Definition: struct_var.h:108
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17707
static SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH(consGetSignedPermsymGraphLinear)
Definition: cons_linear.c:17349
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:873
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:737
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2886
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:4026
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5202
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3164
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2127
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3296
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17871
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:601
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:12516
Definition: type_var.h:49
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:18152
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:793
Definition: struct_scip.h:69
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1991
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10683
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3185
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2547
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1631
public methods for memory management
Definition: type_conflict.h:60
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1569
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:354
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10280
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7910
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1143
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9571
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5449
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:831
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:18172
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1612
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3354
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_linear.c:19089
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:404
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:323
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1813
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:842
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:8110
Definition: type_result.h:58
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
Definition: type_cons.h:83
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1372
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1221
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2096
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1328
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:497
Definition: type_set.h:46
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:693
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2325
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:527
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
Definition: struct_var.h:207
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1438
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1525
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1332
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:869
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4257
Definition: type_symmetry.h:62
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2068
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:832
Definition: type_cons.h:89
Definition: type_message.h:56
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3339
Definition: cons_linear.c:372
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4595
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4644
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:13119
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1233
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:324
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:181
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:608
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2043
SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17916
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18826
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:419
Definition: type_var.h:62
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2421
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7672
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10657
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13508
static SCIP_RETCODE addSymmetryInformation(SCIP *scip, SYM_SYMTYPE symtype, SCIP_CONS *cons, SYM_GRAPH *graph, SCIP_Bool *success)
Definition: cons_linear.c:15242
Definition: cons_linear.c:370
Definition: type_expr.h:65
Definition: type_cons.h:81
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:8078
public methods for problem variables
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:323
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5319
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:235
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9824
Definition: type_result.h:49
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13306
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12800
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5854
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4612
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18533
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:776
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:762
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:624
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2341
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2609
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1479
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18573
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:808
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:9015
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18304
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
Definition: type_cons.h:86
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5118
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:998
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:704
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:352
public methods for numerical tolerances
Definition: struct_conflict.h:49
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11452
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2296
public functions to work with algebraic expressions
public methods for querying solving statistics
Definition: struct_sol.h:73
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4258
Definition: type_cons.h:74
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:301
public methods for the branch-and-bound tree
Definition: type_cons.h:76
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9394
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1128
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:548
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1297
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8175
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5327
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7289
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6920
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:444
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10475
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8534
Definition: struct_misc.h:137
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10429
methods for dealing with symmetry detection graphs
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:347
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11564
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5379
Definition: type_retcode.h:45
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1247
Definition: type_result.h:44
Definition: struct_cons.h:46
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18768
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:458
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3393
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8597
Definition: struct_cons.h:126
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3474
public methods for event handler plugins and event handlers
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5431
SCIP_RETCODE SCIPsetConshdlrGetPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETPERMSYMGRAPH((*consgetpermsymgraph)))
Definition: scip_cons.c:900
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18850
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1058
Definition: type_lp.h:56
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1793
Definition: type_cons.h:82
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1440
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6779
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3610
Definition: type_result.h:45
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:467
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2169
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3415
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4436
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1347
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2119
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:415
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9137
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11242
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:372
Definition: type_var.h:51
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4219
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:13705
Definition: type_var.h:53
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5183
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2015
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3905
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5234
structs for symmetry computations
Definition: type_symmetry.h:61
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:269
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10358
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:638
Definition: type_set.h:52
Definition: type_retcode.h:42
public methods for problem copies
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:819
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5519
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1737
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17883
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2677
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:141
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:806
Definition: type_result.h:51
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:703
Definition: type_cons.h:73
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15427
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4105
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPextendPermsymDetectionGraphLinear(SCIP *scip, SYM_GRAPH *graph, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_CONS *cons, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool *success)
Definition: symmetry_graph.c:226
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:647
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:13190
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2946
public methods for constraint handler plugins and constraints
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7762
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18796
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2226
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4512
Definition: struct_expr.h:105
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1122
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2804
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13245
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2516
public data structures and miscellaneous methods
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3482
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:718
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1607
Definition: type_var.h:64
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4198
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1413
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3096
constraint handler for nonlinear constraints specified by algebraic expressions
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:586
Definition: type_var.h:63
Definition: type_var.h:55
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2537
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4577
Definition: struct_lp.h:201
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7573
methods for debugging
public methods for LP management
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2579
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:14112
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1583
public methods for cuts and aggregation rows
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2073
Definition: type_cons.h:78
Definition: type_set.h:50
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1279
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:400
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18671
Definition: type_cons.h:88
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2359
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:114
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:954
Definition: type_var.h:50
Definition: type_var.h:54
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8275
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4350
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:785
Constraint handler for linear constraints in their most general form, .
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1152
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2608
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18618
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1273
Definition: type_set.h:51
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2144
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:17044
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12775
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18740
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5500
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15445
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4672
SCIP_RETCODE SCIPsetConshdlrGetSignedPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH((*consgetsignedpermsymgraph)))
Definition: scip_cons.c:924
public methods for the LP relaxation, rows and columns
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17900
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2656
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1359
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:343
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3696
static SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphLinear)
Definition: cons_linear.c:17340
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:16220
Definition: type_set.h:45
methods for sorting joint arrays of various types
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8609
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17952
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:516
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:562
public methods for branching rule plugins and branching
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3210
Definition: type_cons.h:77
Definition: struct_misc.h:89
public methods for managing events
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5796
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:670
general public methods
Definition: type_cons.h:84
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5538
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:484
Definition: type_cons.h:85
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:14703
public methods for solutions
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:711
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18660
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5614
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:396
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4615
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1322
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1493
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:810
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:420
Definition: type_lp.h:57
public methods for conflict analysis handlers
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:8045
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:660
public methods for the probing mode
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
Definition: type_cons.h:79
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15315
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:108
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict_graphanalysis.c:1493
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:540
public methods for message output
Definition: type_result.h:52
Definition: type_var.h:97
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:857
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9627
SCIP_RETCODE SCIPgetSymActiveVariables(SCIP *scip, SYM_SYMTYPE symtype, SCIP_VAR ***vars, SCIP_Real **scalars, int *nvars, SCIP_Real *constant, SCIP_Bool transformed)
Definition: symmetry_graph.c:1697
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8400
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7111
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1727
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9685
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:854
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:606
Definition: struct_symmetry.h:45
Definition: struct_nlp.h:64
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10602
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4648
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4658
public methods for message handling
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1161
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13226
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3740
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17558
Definition: type_retcode.h:54
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2167
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:492
Definition: type_set.h:53
Definition: cons_linear.c:352
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17644
Definition: cons_linear.c:366
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1386
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18684
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:471
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9739
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18597
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8425
Definition: type_cons.h:75
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15414
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:703
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:670
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3228
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2737
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:15170
Definition: type_retcode.h:52
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17324
Definition: objbenders.h:43
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:468
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:230
public methods for global and local (sub)problems
Definition: type_var.h:52
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9121
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1217
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1268
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18636
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18549
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10728
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4936
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9373
Definition: cons_linear.c:368
Definition: type_result.h:48
Definition: struct_event.h:204
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2023
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5785
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18465
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2048
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1081
Definition: type_cons.h:80
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:281
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1272
memory allocation routines
Definition: type_var.h:71