heur_trustregion.c
Go to the documentation of this file.
27 * @brief Large neighborhood search heuristic for Benders' decomposition based on trust region methods
30 * The Trust Region heuristic draws upon trust region methods for solving optimization problems, especially in the
31 * context of Benders' decomposition. This heuristic has been developed to improve the heuristic performance of the
34 * The Trust Region heuristic copies the original SCIP instance and adds a constraint to penalize changes from the
35 * incumbent solution. Consider a problem that includes a set of binary variables \f$\mathcal{B}\f$. Given a feasible
36 * solution \f$\hat{x}\f$ to the original problem, we define the set \f$\mathcal{B}^{+}\f$ as the index set for the
37 * binary variables that are 1 in the input solution and \f$\mathcal{B}^{-}\f$ as the index set for binary variables
44 * The variable \f$\theta\f$ measure the distance, in terms of the binary variables, of candidate solutions to the input
47 * In addition, an upper bounding constraint is explicitly added to enforce a minimum improvement from the heuristic,
48 * given by \f$f(x) \le f(\hat{x}) - \epsilon\f$. The parameter \f$\epsilon \ge 0\f$ denotes the minimum improvement
51 * The objective function is then modified to \f$f(x) + M\theta\f$, where \f$M\f$ is a parameter for penalizing the
54 * If a new incumbent solution is found by this heuristic, then the Trust Region heuristic is immediately
58/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
98#define DEFAULT_MINBINVARS 10 /**< the minimum number of binary variables necessary to run the heuristic */
102#define DEFAULT_NODESQUOT 0.05 /**< contingent of sub problem nodes in relation to original nodes */
103#define DEFAULT_LPLIMFAC 1.5 /**< factor by which the limit on the number of LP depends on the node limit */
104#define DEFAULT_NWAITINGNODES 1 /**< number of nodes without incumbent change that heuristic should wait */
105#define DEFAULT_USELPROWS FALSE /**< should subproblem be created out of the rows in the LP rows,
107#define DEFAULT_COPYCUTS TRUE /**< if DEFAULT_USELPROWS is FALSE, then should all active cuts from the cutpool
109#define DEFAULT_BESTSOLLIMIT 3 /**< limit on number of improving incumbent solutions in sub-CIP */
112#define DEFAULT_OBJMINIMPROVE 1e-2 /**< the minimum absolute improvement in the objective function value */
133 SCIP_Real nodelimit; /**< the nodelimit employed in the current sub-SCIP, for the event handler*/
134 SCIP_Real lplimfac; /**< factor by which the limit on the number of LP depends on the node limit */
136 SCIP_Real objminimprove; /**< the minimum absolute improvement in the objective function value */
179 SCIP_CALL( SCIPaddTrustregionNeighborhoodConstraint(scip, subscip, subvars, heurdata->violpenalty) );
191 /* create the upper bounding constraint. An absolute minimum improvement is used for this heuristic. This is
192 * different to other LNS heuristics, where a relative improvement is used. The absolute improvement tries to take
193 * into account problem specific information that is available to the user, such as a minimum step in the objective
309 /* with a little abuse we initialize the heurdata as if trustregion would have finished its last step regularly */
354 SCIP_CALL( SCIPcopyLargeNeighborhoodSearch(scip, subscip, varmapfw, "trustregion", NULL, NULL, 0, heurdata->uselprows,
368 SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecTrustregion, NULL) );
386 SCIP_CALL( SCIPsetCommonSubscipParams(scip, subscip, nsubnodes, MAX(10, nsubnodes/10), heurdata->bestsollimit) );
396 SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );
400 SCIPdebugMsg(scip, "solving trust region subproblem with maxnodes %" SCIP_LONGINT_FORMAT "\n", nsubnodes);
405 * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
414 SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );
421 SCIPdebugMsg(scip, "trust region used %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT " nodes\n",
432 if( SCIPgetStatus(subscip) == SCIP_STATUS_NODELIMIT || SCIPgetStatus(subscip) == SCIP_STATUS_STALLNODELIMIT
494 if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 )
501 * In this case, the trust region heuristic is designed for Benders' decomposition and solutions found may not be
502 * added by this heuristic but by trysol. So we don't reward finding best solutions, but finding any solution. */
503 maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0)));
504 maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */
557 /* if the result is FOUNDSOL, this means that a solution was found during a previous execution of the heuristic.
630 "if uselprows == FALSE, should all active cuts from cutpool be copied to constraints in subproblem?",
Constraint handler for linear constraints in their most general form, .
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17855
SCIP_RETCODE SCIPtranslateSubSols(SCIP *scip, SCIP *subscip, SCIP_HEUR *heur, SCIP_VAR **subvars, SCIP_Bool *success, int *solindex)
Definition: scip_copy.c:1448
SCIP_RETCODE SCIPsetCommonSubscipParams(SCIP *sourcescip, SCIP *subscip, SCIP_Longint nsubnodes, SCIP_Longint nstallnodes, int bestsollimit)
Definition: scip_copy.c:3339
SCIP_RETCODE SCIPcheckCopyLimits(SCIP *sourcescip, SCIP_Bool *success)
Definition: scip_copy.c:3253
SCIP_RETCODE SCIPgetVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars, int *nbinvars, int *nintvars, int *nimplvars, int *ncontvars)
Definition: scip_prob.c:1866
void * SCIPhashmapGetImage(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3261
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3074
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPsetIntParam(SCIP *scip, const char *name, int value)
Definition: scip_param.c:487
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPincludeHeurTrustregion(SCIP *scip)
Definition: heur_trustregion.c:574
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:324
SCIP_RETCODE SCIPcatchEvent(SCIP *scip, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:286
SCIP_RETCODE SCIPdropEvent(SCIP *scip, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:320
SCIP_RETCODE SCIPsetHeurCopy(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURCOPY((*heurcopy)))
Definition: scip_heur.c:162
SCIP_RETCODE SCIPincludeHeurBasic(SCIP *scip, SCIP_HEUR **heur, const char *name, const char *desc, char dispchar, int priority, int freq, int freqofs, int maxdepth, SCIP_HEURTIMING timingmask, SCIP_Bool usessubscip, SCIP_DECL_HEUREXEC((*heurexec)), SCIP_HEURDATA *heurdata)
Definition: scip_heur.c:117
SCIP_RETCODE SCIPsetHeurFree(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURFREE((*heurfree)))
Definition: scip_heur.c:178
SCIP_RETCODE SCIPsetHeurInit(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINIT((*heurinit)))
Definition: scip_heur.c:194
void SCIPheurSetData(SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur.c:1374
SCIP_Longint SCIPgetSolNodenum(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1513
SCIP_Real SCIPgetSolTransObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1347
SCIP_RETCODE SCIPprintStatistics(SCIP *scip, FILE *file)
Definition: scip_solvingstats.c:4186
SCIP_RETCODE SCIPaddTrustregionNeighborhoodConstraint(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR **subvars, SCIP_Real violpenalty)
Definition: heuristics.c:1029
SCIP_RETCODE SCIPcopyLargeNeighborhoodSearch(SCIP *sourcescip, SCIP *subscip, SCIP_HASHMAP *varmap, const char *suffix, SCIP_VAR **fixedvars, SCIP_Real *fixedvals, int nfixedvars, SCIP_Bool uselprows, SCIP_Bool copycuts, SCIP_Bool *success, SCIP_Bool *valid)
Definition: heuristics.c:951
static SCIP_RETCODE setupAndSolveSubscipTrustregion(SCIP *scip, SCIP *subscip, SCIP_HEUR *heur, SCIP_Longint nsubnodes, SCIP_RESULT *result)
Definition: heur_trustregion.c:320
static SCIP_RETCODE addTrustRegionConstraints(SCIP *scip, SCIP *subscip, SCIP_VAR **subvars, SCIP_HEURDATA *heurdata)
Definition: heur_trustregion.c:157
static SCIP_DECL_EVENTEXEC(eventExecTrustregion)
Definition: heur_trustregion.c:233
Large neighborhood search heuristic for Benders' decomposition based on trust region methods.
methods commonly used by primal heuristics
memory allocation routines
Definition: objbenders.h:44
public methods for managing events
public methods for primal heuristics
public methods for message output
public data structures and miscellaneous methods
public methods for primal CIP solutions
public methods for problem variables
public methods for branching rule plugins and branching
public methods for constraint handler plugins and constraints
public methods for problem copies
public methods for event handler plugins and event handlers
general public methods
public methods for primal heuristic plugins and divesets
public methods for memory management
public methods for message handling
public methods for node selector plugins
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for solutions
public solving methods
public methods for querying solving statistics
public methods for SCIP variables
Definition: struct_cons.h:47
Definition: struct_event.h:205
Definition: struct_misc.h:138
Definition: struct_heur.h:98
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_scip.h:70