Scippy

SCIP

Solving Constraint Integer Programs

heur_indicator.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file heur_indicator.c
26 * @ingroup DEFPLUGINS_HEUR
27 * @brief handle partial solutions for linear problems with indicators and otherwise continuous variables
28 * @author Marc Pfetsch
29 *
30 * For linear problems with indicators and otherwise continuous variables, the indicator constraint handler can produce
31 * partial solutions, i.e., values for the indicator variables. This partial solution can be passed to this heuristic,
32 * which then fixes these values and solves an LP. Additionally a local search for a better solution is added.
33 */
34
35/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
36
38#include "scip/cons_indicator.h"
39#include "scip/heur_indicator.h"
40#include "scip/pub_cons.h"
41#include "scip/pub_heur.h"
42#include "scip/pub_message.h"
43#include "scip/pub_sol.h"
44#include "scip/pub_var.h"
45#include "scip/scip_cons.h"
46#include "scip/scip_copy.h"
47#include "scip/scip_general.h"
48#include "scip/scip_heur.h"
49#include "scip/scip_lp.h"
50#include "scip/scip_mem.h"
51#include "scip/scip_message.h"
52#include "scip/scip_numerics.h"
53#include "scip/scip_param.h"
54#include "scip/scip_prob.h"
55#include "scip/scip_probing.h"
56#include "scip/scip_sol.h"
57#include "scip/scip_tree.h"
58#include <string.h>
59
60#define HEUR_NAME "indicator"
61#define HEUR_DESC "indicator heuristic to create feasible solutions from values for indicator variables"
62#define HEUR_DISPCHAR SCIP_HEURDISPCHAR_LNS
63#define HEUR_PRIORITY -20200
64#define HEUR_FREQ 1
65#define HEUR_FREQOFS 0
66#define HEUR_MAXDEPTH -1
67#define HEUR_TIMING SCIP_HEURTIMING_DURINGLPLOOP
68#define HEUR_USESSUBSCIP FALSE /**< does the heuristic use a secondary SCIP instance? */
69
70#define DEFAULT_ONEOPT FALSE /**< whether the one-opt heuristic should be started */
71#define DEFAULT_IMPROVESOLS FALSE /**< Try to improve other solutions by one-opt? */
72
73
74/** primal heuristic data */
75struct SCIP_HeurData
76{
77 int nindconss; /**< number of indicator constraints */
78 SCIP_CONS** indconss; /**< indicator constraints */
79 SCIP_Bool* solcand; /**< bitset of indicator variables in solution candidate */
80 SCIP_Real obj; /**< objective of previously stored solution */
81 SCIP_Bool oneopt; /**< whether the one-opt heuristic should be started */
82 SCIP_CONSHDLR* indicatorconshdlr; /**< indicator constraint handler */
83 SCIP_SOL* lastsol; /**< last solution considered for improvement */
84 SCIP_Bool improvesols; /**< Try to improve other solutions by one-opt? */
85};
86
87/*
88 * Local methods
89 */
90
91/** try one-opt on given solution */
92static
94 SCIP* scip, /**< SCIP data structure */
95 SCIP_HEUR* heur, /**< indicator heuristic */
96 SCIP_HEURDATA* heurdata, /**< heuristic data */
97 int nindconss, /**< number of indicator constraints */
98 SCIP_CONS** indconss, /**< indicator constraints */
99 SCIP_Bool* solcand, /**< values for indicator variables in partial solution */
100 int* nfoundsols /**< number of solutions found */
101 )
102{
103 SCIP_Bool cutoff;
104 SCIP_Bool lperror;
105 SCIP_Bool stored;
106 SCIP_SOL* sol;
107 int cnt = 0;
108 int i;
109 int c;
110
111 assert( scip != NULL );
112 assert( heur != NULL );
113 assert( heurdata != NULL );
114 assert( nindconss == 0 || indconss != NULL );
115 assert( solcand != NULL );
116 assert( nfoundsols != NULL );
117
118 SCIPdebugMsg(scip, "Performing one-opt ...\n");
119 *nfoundsols = 0;
120
122
123 for (i = 0; i < nindconss && ! SCIPisStopped(scip); ++i)
124 {
125 SCIP_VAR* binvar;
126
127 /* skip nonactive constraints */
128 if ( ! SCIPconsIsActive(indconss[i]) )
129 continue;
130
131 binvar = SCIPgetBinaryVarIndicator(indconss[i]);
132 assert( binvar != NULL );
133
134 /* skip constraints with fixed variables */
135 if ( SCIPvarGetUbLocal(binvar) < 0.5 || SCIPvarGetLbLocal(binvar) > 0.5 )
136 continue;
137
138 /* return if the we would exceed the depth limit of the tree */
140 break;
141
142 if ( solcand[i] )
143 continue;
144
145 /* get rid of all bound changes */
147 ++cnt;
148
149 /* fix variables */
150 for (c = 0; c < nindconss; ++c)
151 {
152 SCIP_Bool s;
153
154 /* skip nonactive constraints */
155 if ( ! SCIPconsIsActive(indconss[c]) )
156 continue;
157
158 binvar = SCIPgetBinaryVarIndicator(indconss[c]);
159 assert( binvar != NULL );
160
161 /* fix variables according to solution candidate, except constraint i */
162 if ( c == i )
163 s = ! solcand[c];
164 else
165 s = solcand[c];
166
167 if ( ! s )
168 {
169 if ( SCIPvarGetLbLocal(binvar) < 0.5 && SCIPvarGetUbLocal(binvar) > 0.5 )
170 {
171 SCIP_CALL( SCIPchgVarLbProbing(scip, binvar, 1.0) );
172 }
173 }
174 else
175 {
176 if ( SCIPvarGetUbLocal(binvar) > 0.5 && SCIPvarGetLbLocal(binvar) < 0.5 )
177 {
178 SCIP_CALL( SCIPchgVarUbProbing(scip, binvar, 0.0) );
179 }
180 }
181 }
182
183 /* propagate variables */
184 SCIP_CALL( SCIPpropagateProbing(scip, -1, &cutoff, NULL) );
185 if ( cutoff )
186 {
188 continue;
189 }
190
191 /* solve LP to move continuous variables */
192 SCIP_CALL( SCIPsolveProbingLP(scip, -1, &lperror, &cutoff) );
193
194 /* the LP often reaches the objective limit - we currently do not use such solutions */
195 if ( lperror || cutoff || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
196 {
197#ifdef SCIP_DEBUG
198 if ( lperror )
199 SCIPdebugMsg(scip, "An LP error occurred.\n");
200#endif
202 continue;
203 }
204
205 /* create solution */
206 SCIP_CALL( SCIPcreateSol(scip, &sol, heur) );
207
208 /* copy the current LP solution to the working solution */
210
211 /* check solution for feasibility */
212 SCIPdebugMsg(scip, "One-opt found solution candidate with value %g.\n", SCIPgetSolTransObj(scip, sol));
213
214 /* only check integrality, because we solved an LP */
215 SCIP_CALL( SCIPtrySolFree(scip, &sol, FALSE, FALSE, FALSE, TRUE, FALSE, &stored) );
216 if ( stored )
217 ++(*nfoundsols);
219 }
221
222 SCIPdebugMsg(scip, "Finished one-opt (tried variables: %d, found sols: %d).\n", cnt, *nfoundsols);
223
224 return SCIP_OKAY;
225}
226
227
228/** try given solution */
229static
231 SCIP* scip, /**< SCIP data structure */
232 SCIP_HEUR* heur, /**< indicator heuristic */
233 SCIP_HEURDATA* heurdata, /**< heuristic data */
234 int nindconss, /**< number of indicator constraints */
235 SCIP_CONS** indconss, /**< indicator constraints */
236 SCIP_Bool* solcand, /**< values for indicator variables in partial solution */
237 int* nfoundsols /**< number of solutions found */
238 )
239{
240 SCIP_Bool cutoff;
241 SCIP_Bool lperror;
242 SCIP_Bool stored;
243 SCIP_SOL* sol;
244 int c;
245
246 assert( scip != NULL );
247 assert( heur != NULL );
248 assert( heurdata != NULL );
249 assert( nindconss == 0 || indconss != NULL );
250 assert( solcand != NULL );
251 assert( nfoundsols != NULL );
252
253 SCIPdebugMsg(scip, "Trying to generate feasible solution with indicators from solution candidate (obj: %f) ...\n", heurdata->obj);
254 *nfoundsols = 0;
255
257
258 /* we can stop here if we have already reached the maximal depth */
260 {
262 return SCIP_OKAY;
263 }
264
266
267 /* fix variables */
268 for (c = 0; c < nindconss; ++c)
269 {
270 SCIP_VAR* binvar;
271
272 /* skip nonactive constraints */
273 if ( ! SCIPconsIsActive(indconss[c]) )
274 continue;
275
276 binvar = SCIPgetBinaryVarIndicator(indconss[c]);
277 assert( binvar != NULL );
278
279 /* Fix binary variables not in cover to 1 and corresponding slack variables to 0. The other binary variables are fixed to 0. */
280 if ( ! solcand[c] )
281 {
282 /* to be sure, check for non-fixed variables */
283 if ( SCIPvarGetLbLocal(binvar) < 0.5 && SCIPvarGetUbLocal(binvar) > 0.5 )
284 {
285 SCIP_CALL( SCIPchgVarLbProbing(scip, binvar, 1.0) );
286 }
287 }
288 else
289 {
290 if ( SCIPvarGetUbLocal(binvar) > 0.5 && SCIPvarGetLbLocal(binvar) < 0.5 )
291 {
292 SCIP_CALL( SCIPchgVarUbProbing(scip, binvar, 0.0) );
293 }
294 }
295 }
296
297 /* propagate variables */
298 SCIP_CALL( SCIPpropagateProbing(scip, -1, &cutoff, NULL) );
299 if ( cutoff )
300 {
301 SCIPdebugMsg(scip, "Solution candidate reaches cutoff (in propagation).\n");
303 return SCIP_OKAY;
304 }
305
306 /* solve LP to move continuous variables */
307 SCIP_CALL( SCIPsolveProbingLP(scip, -1, &lperror, &cutoff) );
308
309 /* the LP often reaches the objective limit - we currently do not use such solutions */
310 if ( lperror || cutoff || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
311 {
312#ifdef SCIP_DEBUG
313 if ( lperror )
314 {
315 SCIPdebugMsg(scip, "An LP error occurred.\n");
316 }
317 else
318 {
319 SCIPdebugMsg(scip, "Solution candidate reaches cutoff (in LP solving).\n");
320 }
321#endif
323 return SCIP_OKAY;
324 }
325
326 /* create solution */
327 SCIP_CALL( SCIPcreateSol(scip, &sol, heur) );
328
329 /* copy the current LP solution to the working solution */
331
332 /* check solution for feasibility */
333#ifdef SCIP_DEBUG
334 SCIPdebugMsg(scip, "Found solution candidate with value %g.\n", SCIPgetSolTransObj(scip, sol));
335#ifdef SCIP_MORE_DEBUG
337#endif
338 SCIP_CALL( SCIPtrySolFree(scip, &sol, TRUE, TRUE, TRUE, TRUE, TRUE, &stored) );
339 if ( stored )
340 {
341 ++(*nfoundsols);
342 SCIPdebugMsg(scip, "Solution is feasible and stored.\n");
343 }
344 else
345 SCIPdebugMsg(scip, "Solution was not stored.\n");
346#else
347 /* only check integrality, because we solved an LP */
348 SCIP_CALL( SCIPtrySolFree(scip, &sol, FALSE, FALSE, FALSE, TRUE, FALSE, &stored) );
349 if ( stored )
350 ++(*nfoundsols);
351#endif
353
354 /* possibly perform one-opt */
355 if ( stored && heurdata->oneopt )
356 {
357 int nfound = 0;
358 assert( *nfoundsols > 0 );
359 SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfound) );
360 }
361
362 return SCIP_OKAY;
363}
364
365
366/*
367 * Callback methods of primal heuristic
368 */
369
370/** copy method for primal heuristic plugins (called when SCIP copies plugins) */
371static
372SCIP_DECL_HEURCOPY(heurCopyIndicator)
373{ /*lint --e{715}*/
374 assert( scip != NULL );
375 assert( heur != NULL );
376 assert( strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0 );
377
378 /* call inclusion method of primal heuristic */
380
381 return SCIP_OKAY;
382}
383
384/** initialization method of primal heuristic (called after problem was transformed) */
385static
386SCIP_DECL_HEURINIT(heurInitIndicator)
387{ /*lint --e{715}*/
388 SCIP_HEURDATA* heurdata;
389
390 assert( heur != NULL );
391 assert( scip != NULL );
392
393 /* get heuristic data */
394 heurdata = SCIPheurGetData(heur);
395 assert( heurdata != NULL );
396
397 if ( heurdata->indicatorconshdlr == NULL )
398 {
399 heurdata->indicatorconshdlr = SCIPfindConshdlr(scip, "indicator");
400 if ( heurdata->indicatorconshdlr == NULL )
401 {
402 SCIPwarningMessage(scip, "Could not find indicator constraint handler.\n");
403 }
404 }
405
406 return SCIP_OKAY;
407}
408
409/** destructor of primal heuristic to free user data (called when SCIP is exiting) */
410static
411SCIP_DECL_HEURFREE(heurFreeIndicator)
412{ /*lint --e{715}*/
413 SCIP_HEURDATA* heurdata;
414
415 assert( heur != NULL );
416 assert( scip != NULL );
417
418 /* get heuristic data */
419 heurdata = SCIPheurGetData(heur);
420 assert( heurdata != NULL );
421
422 SCIPfreeBlockMemoryArrayNull(scip, &(heurdata->indconss), heurdata->nindconss);
423 SCIPfreeBlockMemoryArrayNull(scip, &(heurdata->solcand), heurdata->nindconss);
424
425 /* free heuristic data */
426 SCIPfreeBlockMemory(scip, &heurdata);
427 SCIPheurSetData(heur, NULL);
428
429 return SCIP_OKAY;
430}
431
432
433/** execution method of primal heuristic */
434static
435SCIP_DECL_HEUREXEC(heurExecIndicator)
436{ /*lint --e{715}*/
437 SCIP_HEURDATA* heurdata;
438 int nfoundsols = 0;
439
440 assert( heur != NULL );
441 assert( scip != NULL );
442 assert( result != NULL );
443
444 *result = SCIP_DIDNOTRUN;
445
446 if ( SCIPgetSubscipDepth(scip) > 0 )
447 return SCIP_OKAY;
448
449 /* get heuristic's data */
450 heurdata = SCIPheurGetData(heur);
451 assert( heurdata != NULL );
452
453 /* call heuristic, if solution candidate is available */
454 if ( heurdata->solcand != NULL )
455 {
456 assert( heurdata->nindconss > 0 );
457 assert( heurdata->indconss != NULL );
458
459 /* The heuristic will only be successful if there are no integral variables and no binary variables except the
460 * indicator variables. */
461 if ( SCIPgetNIntVars(scip) > 0 || heurdata->nindconss < SCIPgetNBinVars(scip) )
462 return SCIP_OKAY;
463
464 SCIP_CALL( trySolCandidate(scip, heur, heurdata, heurdata->nindconss, heurdata->indconss, heurdata->solcand, &nfoundsols) );
465
466 if ( nfoundsols > 0 )
467 *result = SCIP_FOUNDSOL;
468 else
469 *result = SCIP_DIDNOTFIND;
470
471 /* free memory */
472 SCIPfreeBlockMemoryArray(scip, &(heurdata->solcand), heurdata->nindconss);
473 SCIPfreeBlockMemoryArray(scip, &(heurdata->indconss), heurdata->nindconss);
474 }
475
476 /* try to improve solutions generated by other heuristics */
477 if ( heurdata->improvesols )
478 {
479 SCIP_CONS** indconss;
480 SCIP_Bool* solcand;
481 SCIP_SOL* bestsol;
482 int nindconss;
483 int i;
484
485 if ( heurdata->indicatorconshdlr == NULL )
486 return SCIP_OKAY;
487
488 /* check whether a new best solution has been found */
489 bestsol = SCIPgetBestSol(scip);
490 if ( bestsol == heurdata->lastsol )
491 return SCIP_OKAY;
492 heurdata->lastsol = bestsol;
493
494 /* avoid solutions produced by this heuristic */
495 if ( SCIPsolGetHeur(bestsol) == heur )
496 return SCIP_OKAY;
497
498 /* The heuristic will only be successful if there are no integral variables and no binary variables except the
499 * indicator variables. */
500 nindconss = SCIPconshdlrGetNConss(heurdata->indicatorconshdlr);
501 if ( SCIPgetNIntVars(scip) > 0 || nindconss < SCIPgetNBinVars(scip) )
502 return SCIP_OKAY;
503
504 if ( nindconss == 0 )
505 return SCIP_OKAY;
506
507 indconss = SCIPconshdlrGetConss(heurdata->indicatorconshdlr);
508 assert( indconss != NULL );
509
510 /* fill solution candidate */
511 SCIP_CALL( SCIPallocBufferArray(scip, &solcand, nindconss) );
512 for (i = 0; i < nindconss; ++i)
513 {
514 SCIP_VAR* binvar;
515 SCIP_Real val;
516
517 solcand[i] = FALSE;
518 if ( SCIPconsIsActive(indconss[i]) )
519 {
520 binvar = SCIPgetBinaryVarIndicator(indconss[i]);
521 assert( binvar != NULL );
522
523 val = SCIPgetSolVal(scip, bestsol, binvar);
524 assert( SCIPisFeasIntegral(scip, val) );
525 if ( val > 0.5 )
526 solcand[i] = TRUE;
527 }
528 }
529
530 SCIPdebugMsg(scip, "Trying to improve best solution of value %f.\n", SCIPgetSolOrigObj(scip, bestsol) );
531
532 /* try one-opt heuristic */
533 SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfoundsols) );
534
535 if ( nfoundsols > 0 )
536 *result = SCIP_FOUNDSOL;
537 else
538 *result = SCIP_DIDNOTFIND;
539
540 SCIPfreeBufferArray(scip, &solcand);
541 }
542
543 return SCIP_OKAY;
544}
545
546
547/*
548 * primal heuristic specific interface methods
549 */
550
551/** creates the indicator primal heuristic and includes it in SCIP */
553 SCIP* scip /**< SCIP data structure */
554 )
555{
556 SCIP_HEURDATA* heurdata;
557 SCIP_HEUR* heur;
558
559 /* create Indicator primal heuristic data */
560 SCIP_CALL( SCIPallocBlockMemory(scip, &heurdata) );
561 heurdata->nindconss = 0;
562 heurdata->indconss = NULL;
563 heurdata->solcand = NULL;
564 heurdata->lastsol = NULL;
565 heurdata->indicatorconshdlr = NULL;
566 heurdata->obj = SCIPinfinity(scip);
567
568 /* include primal heuristic */
571 HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecIndicator, heurdata) );
572
573 assert( heur != NULL );
574
575 /* set non-NULL pointers to callback methods */
576 SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyIndicator) );
577 SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitIndicator) );
578 SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeIndicator) );
579
580 /* add parameters */
582 "heuristics/" HEUR_NAME "/oneopt",
583 "whether the one-opt heuristic should be started",
584 &heurdata->oneopt, TRUE, DEFAULT_ONEOPT, NULL, NULL) );
585
587 "heuristics/" HEUR_NAME "/improvesols",
588 "Try to improve other solutions by one-opt?",
589 &heurdata->improvesols, TRUE, DEFAULT_IMPROVESOLS, NULL, NULL) );
590
591 return SCIP_OKAY;
592}
593
594
595/** pass partial solution for indicator variables to heuristic */
597 SCIP* scip, /**< SCIP data structure */
598 SCIP_HEUR* heur, /**< indicator heuristic */
599 int nindconss, /**< number of indicator constraints */
600 SCIP_CONS** indconss, /**< indicator constraints */
601 SCIP_Bool* solcand, /**< values for indicator variables in partial solution */
602 SCIP_Real obj /**< objective of solution */
603 )
604{
605 SCIP_HEURDATA* heurdata;
606
607 assert( scip != NULL );
608 assert( heur != NULL );
609 assert( strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0 );
610 assert( nindconss > 0 );
611 assert( indconss != NULL );
612 assert( solcand != NULL );
613
614 /* get heuristic's data */
615 heurdata = SCIPheurGetData(heur);
616 assert( heurdata != NULL );
617
618 if ( obj >= heurdata->obj )
619 return SCIP_OKAY;
620
621 /* copy indicator information */
622 if ( heurdata->indconss != NULL )
623 SCIPfreeBlockMemoryArray(scip, &(heurdata->indconss), heurdata->nindconss);
624
625 SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(heurdata->indconss), indconss, nindconss) );
626 heurdata->nindconss = nindconss;
627
628 /* copy partial solution */
629 if ( heurdata->solcand != NULL )
630 BMScopyMemoryArray(heurdata->solcand, solcand, nindconss);
631 else
632 SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(heurdata->solcand), solcand, nindconss) );
633 heurdata->obj = obj;
634
635 return SCIP_OKAY;
636}
constraint handler for indicator constraints
#define NULL
Definition: def.h:266
#define SCIP_MAXTREEDEPTH
Definition: def.h:315
#define SCIP_Bool
Definition: def.h:91
#define SCIP_Real
Definition: def.h:172
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define SCIP_CALL(x)
Definition: def.h:373
SCIP_VAR * SCIPgetBinaryVarIndicator(SCIP_CONS *cons)
int SCIPgetSubscipDepth(SCIP *scip)
Definition: scip_copy.c:2605
SCIP_Bool SCIPisStopped(SCIP *scip)
Definition: scip_general.c:734
int SCIPgetNIntVars(SCIP *scip)
Definition: scip_prob.c:2082
int SCIPgetNBinVars(SCIP *scip)
Definition: scip_prob.c:2037
#define SCIPdebugMsg
Definition: scip_message.h:78
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_RETCODE SCIPheurPassIndicator(SCIP *scip, SCIP_HEUR *heur, int nindconss, SCIP_CONS **indconss, SCIP_Bool *solcand, SCIP_Real obj)
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPincludeHeurIndicator(SCIP *scip)
int SCIPconshdlrGetNConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4636
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4593
SCIP_Bool SCIPconsIsActive(SCIP_CONS *cons)
Definition: cons.c:8275
SCIP_RETCODE SCIPsetHeurCopy(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURCOPY((*heurcopy)))
Definition: scip_heur.c:162
SCIP_HEURDATA * SCIPheurGetData(SCIP_HEUR *heur)
Definition: heur.c:1364
SCIP_RETCODE SCIPincludeHeurBasic(SCIP *scip, SCIP_HEUR **heur, const char *name, const char *desc, char dispchar, int priority, int freq, int freqofs, int maxdepth, SCIP_HEURTIMING timingmask, SCIP_Bool usessubscip, SCIP_DECL_HEUREXEC((*heurexec)), SCIP_HEURDATA *heurdata)
Definition: scip_heur.c:117
SCIP_RETCODE SCIPsetHeurFree(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURFREE((*heurfree)))
Definition: scip_heur.c:178
SCIP_RETCODE SCIPsetHeurInit(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINIT((*heurinit)))
Definition: scip_heur.c:194
const char * SCIPheurGetName(SCIP_HEUR *heur)
Definition: heur.c:1453
void SCIPheurSetData(SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur.c:1374
SCIP_LPSOLSTAT SCIPgetLPSolstat(SCIP *scip)
Definition: scip_lp.c:168
#define SCIPfreeBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:110
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPchgVarUbProbing(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_probing.c:345
SCIP_RETCODE SCIPchgVarLbProbing(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_probing.c:301
SCIP_RETCODE SCIPpropagateProbing(SCIP *scip, int maxproprounds, SCIP_Bool *cutoff, SCIP_Longint *ndomredsfound)
Definition: scip_probing.c:580
SCIP_RETCODE SCIPbacktrackProbing(SCIP *scip, int probingdepth)
Definition: scip_probing.c:225
SCIP_RETCODE SCIPstartProbing(SCIP *scip)
Definition: scip_probing.c:119
SCIP_RETCODE SCIPnewProbingNode(SCIP *scip)
Definition: scip_probing.c:165
SCIP_RETCODE SCIPsolveProbingLP(SCIP *scip, int itlim, SCIP_Bool *lperror, SCIP_Bool *cutoff)
Definition: scip_probing.c:820
SCIP_RETCODE SCIPendProbing(SCIP *scip)
Definition: scip_probing.c:260
SCIP_SOL * SCIPgetBestSol(SCIP *scip)
Definition: scip_sol.c:2165
SCIP_RETCODE SCIPcreateSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:180
SCIP_RETCODE SCIPprintSol(SCIP *scip, SCIP_SOL *sol, FILE *file, SCIP_Bool printzeros)
Definition: scip_sol.c:1627
SCIP_HEUR * SCIPsolGetHeur(SCIP_SOL *sol)
Definition: sol.c:2804
SCIP_RETCODE SCIPtrySolFree(SCIP *scip, SCIP_SOL **sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: scip_sol.c:3046
SCIP_RETCODE SCIPlinkLPSol(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:878
SCIP_Real SCIPgetSolOrigObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1296
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_Real SCIPgetSolTransObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1343
SCIP_Real SCIPinfinity(SCIP *scip)
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
int SCIPgetDepth(SCIP *scip)
Definition: scip_tree.c:672
SCIP_Real SCIPvarGetUbLocal(SCIP_VAR *var)
Definition: var.c:18143
SCIP_Real SCIPvarGetLbLocal(SCIP_VAR *var)
Definition: var.c:18133
static SCIP_DECL_HEURINIT(heurInitIndicator)
static SCIP_RETCODE tryOneOpt(SCIP *scip, SCIP_HEUR *heur, SCIP_HEURDATA *heurdata, int nindconss, SCIP_CONS **indconss, SCIP_Bool *solcand, int *nfoundsols)
#define DEFAULT_ONEOPT
#define HEUR_TIMING
static SCIP_DECL_HEURFREE(heurFreeIndicator)
#define HEUR_FREQOFS
#define HEUR_DESC
static SCIP_RETCODE trySolCandidate(SCIP *scip, SCIP_HEUR *heur, SCIP_HEURDATA *heurdata, int nindconss, SCIP_CONS **indconss, SCIP_Bool *solcand, int *nfoundsols)
static SCIP_DECL_HEUREXEC(heurExecIndicator)
#define HEUR_DISPCHAR
#define HEUR_MAXDEPTH
#define HEUR_PRIORITY
#define HEUR_NAME
#define HEUR_FREQ
#define HEUR_USESSUBSCIP
static SCIP_DECL_HEURCOPY(heurCopyIndicator)
#define DEFAULT_IMPROVESOLS
handle partial solutions for linear problems with indicators and otherwise continuous variables
memory allocation routines
#define BMScopyMemoryArray(ptr, source, num)
Definition: memory.h:134
public methods for managing constraints
public methods for primal heuristics
public methods for message output
public methods for primal CIP solutions
public methods for problem variables
public methods for constraint handler plugins and constraints
public methods for problem copies
general public methods
public methods for primal heuristic plugins and divesets
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for the probing mode
public methods for solutions
public methods for the branch-and-bound tree
struct SCIP_HeurData SCIP_HEURDATA
Definition: type_heur.h:77
@ SCIP_LPSOLSTAT_OPTIMAL
Definition: type_lp.h:43
@ SCIP_DIDNOTRUN
Definition: type_result.h:42
@ SCIP_DIDNOTFIND
Definition: type_result.h:44
@ SCIP_FOUNDSOL
Definition: type_result.h:56
@ SCIP_OKAY
Definition: type_retcode.h:42
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63