Loading [MathJax]/extensions/TeX/AMSmath.js
Scippy

SCIP

Solving Constraint Integer Programs

pricer_coloring.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file pricer_coloring.c
26 * @brief variable pricer for the vertex coloring problem
27 * @author Gerald Gamrath
28 * @author Rolf van der Hulst
29 *
30 * This file implements the pricer for the coloring algorithm.
31 *
32 * It computes maximal stable sets in the current graph whose corresponding variables can improve
33 * the current LP solution. This is done by computing a maximum weighted stable set in the current
34 * graph with dual-variables of the node constraints as weights. A variable can improve the
35 * solution, if the weight of the corresponding stable set is larger than 1, since it then has
36 * negative reduced costs, which are given by (1 - weight of the set).
37 *
38 * The pricer first tries to compute such a stable set using a a greedy-method. If it fails, the tclique-algorithm is
39 * used on the complementary graph. This is a branch-and-bound based algorithm for maximal cliques,
40 * included in SCIP. In this case, not only the best solution is added to the LP, but also all other
41 * stable sets found during the branch-and-bound process that could improve the current LP solution
42 * are added, limited to a maximal number that can be changed by a parameter.
43 */
44
45/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
46
47#include <assert.h>
48#include <string.h>
49
50#include "pricer_coloring.h"
51#include "reader_col.h"
52#include "cons_storeGraph.h"
53#include <stdio.h>
54#include <stdlib.h>
55
56
57#define PRICER_NAME "coloring"
58#define PRICER_DESC "pricer for coloring"
59#define PRICER_PRIORITY 5000000
60#define PRICER_DELAY TRUE /* only call pricer if all problem variables have non-negative reduced costs */
61
62/* defines for rounding for tclique */
63#define MAXDNOM 10000LL
64#define MINDELTA 1e-12
65#define MAXDELTA 1e-09
66
67
68/* default values for parameters */
69#define DEFAULT_MAXVARSROUND 1
70#define DEFAULT_USETCLIQUE TRUE
71#define DEFAULT_USEGREEDY TRUE
72#define DEFAULT_ONLYBEST FALSE
73#define DEFAULT_MAXROUNDSROOT -1
74#define DEFAULT_MAXROUNDSNODE -1
75#define DEFAULT_MAXTCLIQUENODES INT_MAX
76
77
78/*
79 * Data structures
80 */
81
82
83/** variable pricer data */
84struct SCIP_PricerData
85{
86 SCIP* scip; /* SCIP data structure */
87 int maxvarsround; /* maximal number of variables created each round */
88 int oldmaxvarsround; /* maximal number of variables created each round, old value before parameter was changed */
89 int nstablesetsfound; /* number of improving stable sets found in the current round so far */
90 SCIP_CONS** constraints; /* array containing all node constraints */
91 SCIP_Real scalefactor; /* the factor used for scaling the rational values to integers for the tclique-weights */
92 SCIP_Real* pi; /* array of the dual solutions */
93 SCIP_Bool onlybest; /* determines whether the maxvarsround variables with the best reduced costs should be added
94 (onlybest = true) or the first maxvarsround variables which are found are added (false) */
95 SCIP_Bool usegreedy; /* determines whether a greedy method is used for finding variables with neg. reduced costs */
96 SCIP_Bool usetclique; /* determines whether the tclique method is used for finding improving variables */
97 int** improvingstablesets; /* array to store the maxvarsround stable sets with the most negative reduced costs */
98 int improvingstablesetssize; /* size of each improvingstablesets array */
99 int* nstablesetnodes; /* array which stores the lengths of the stable sets in improvingstablesets */
100 int actindex; /* the index at which the current stable set was inserted into improvingstablesets */
101 SCIP_NODE* bbnode; /* the current B&B-tree node, used for limiting the number of pricing rounds */
102 int noderounds; /* the number of remaining pricing rounds at the current node */
103 int maxroundsroot; /* maximum number of pricing rounds in the root, -1 for infinity, attention: positive value may lead to a non-optimal solution */
104 int maxroundsnode; /* maximum number of pricing rounds in the B&B-nodes, -1 for infinity, attention: positive value may lead to a non-optimal solution */
105 int maxtcliquenodes; /* maximum number of nodes used in the tclique algorithm for solving the stable set problem */
106 SCIP_Real lowerbound; /* lower bound computed by the pricer */
107};
108
109
110/*
111 * Local methods
112 */
113
114/** returns whether the graph has an uncolored node
115 */
116static
118 TCLIQUE_GRAPH* graph, /**< the graph that should be colored */
119 SCIP_Bool* colored /**< array of booleans, colored[i] == TRUE iff node i is colored */
120 )
121{
122 int i;
123
124 assert(graph != NULL);
125 assert(colored != NULL);
126
127 for ( i = 0; i < tcliqueGetNNodes(graph); i++)
128 {
129 /* node not yet colored */
130 if (!colored[i])
131 {
132 return TRUE;
133 }
134 }
135 return FALSE;
136}
137
138/** sorts the nodes from 0 to nnodes-1 w.r.t. the given weights */
139static
141 SCIP* scip, /**< SCIP data structure */
142 SCIP_Real* weights, /**< the weights for sorting */
143 int nnodes, /**< the number of nodes */
144 int* sortednodes /**< the array that will be overwritten with the sorted node numbers */
145 )
146{
147 int i;
148 SCIP_Real* values;
149
150 assert(scip != NULL);
151 assert(weights != NULL);
152
153 /* create array with indices and copy the weights-array */
155 for ( i = 0; i < nnodes; i++)
156 {
157 sortednodes[i] = i;
158 values[i] = weights[i];
159 }
160
161 /* sort the nodes w.r.t. the computed values */
162 SCIPsortDownRealInt(values, sortednodes, nnodes);
163 SCIPfreeBufferArray(scip, &values);
164
165 return SCIP_OKAY;
166}
167
168/** computes a stable set with a greedy-method. attention: the weight of the maximum stable set is not computed! */
169static
171 SCIP* scip, /**< SCIP data structure */
172 TCLIQUE_GRAPH* graph, /**< pointer to graph data structure */
173 SCIP_Bool* colored, /**< array for marking yet colored nodes */
174 int* maxstablesetnodes, /**< pointer to store nodes of the maximum weight stableset */
175 int* nmaxstablesetnodes /**< pointer to store number of nodes in the maximum weight stableset */
176 )
177{
178 SCIP_Bool indnode;
179 int nnodes;
180 int i;
181 int j;
182 int* degrees;
183 int* sortednodes;
184 SCIP_Real* values; /* values for sorting the nodes: deg(v)+w(v)*nnodes */
185
186 assert(scip != NULL);
187 assert(graph != NULL);
188 assert(maxstablesetnodes != NULL);
189 assert(nmaxstablesetnodes != NULL);
190
191 /* get number of nodes */
192 nnodes = tcliqueGetNNodes(graph);
193 *nmaxstablesetnodes = 0;
194
195 /* get the degrees for the nodes in the graph */
196 degrees = tcliqueGetDegrees(graph);
198 SCIP_CALL( SCIPallocBufferArray(scip, &sortednodes, nnodes) );
199
200 /* set values to the nodes which are used for sorting them */
201 /* value = degree of the node + weight of the node * number of nodes, therefore the yet colored nodes
202 (which have weight 0) have lower values than the not yet colored nodes which have weight 1 */
203 for ( i = 0; i < nnodes; i++ )
204 {
205 sortednodes[i] = i;
206 values[i] = ( colored[i] == TRUE ? degrees[i] : degrees[i]+nnodes );
207 }
208
209 /* sort the nodes w.r.t. the computed values */
210 SCIPsortDownRealInt(values, sortednodes, nnodes);
211
212 /* insert first node */
213 maxstablesetnodes[0] = sortednodes[0];
214 (*nmaxstablesetnodes) = 1;
215 for ( i = 1; i < nnodes; i++)
216 {
217 /* check whether node is independent to nodes in the set */
218 indnode = TRUE;
219 for ( j = 0; j < (*nmaxstablesetnodes); j++ )
220 {
221 if ( tcliqueIsEdge(graph, sortednodes[i], maxstablesetnodes[j]) )
222 {
223 indnode = FALSE;
224 break;
225 }
226 }
227 if ( indnode == TRUE )
228 {
229 /* node is independent, thus add it to the set */
230 maxstablesetnodes[*nmaxstablesetnodes] = sortednodes[i];
231 (*nmaxstablesetnodes) = (*nmaxstablesetnodes)+1;
232 }
233
234 }
235 SCIPfreeBufferArray(scip, &sortednodes);
236 SCIPfreeBufferArray(scip, &values);
237
238 return SCIP_OKAY;
239}
240
241/** Calculates a good scalar value to use in order to scale the dual weights to integer values without large loss of precision */
242static
244 SCIP_PRICERDATA* pricerdata, /**< pricer data */
245 int nnodes /**< number of nodes */
246 )
247{
248 SCIP_Real maxsum = 0.0;
249 SCIP_Real maxscale;
250 SCIP_Bool scalesuccess;
251 int i;
252
253 /* calculate largest possible sum in maximum clique problem */
254 for ( i = 0; i < nnodes; ++i )
255 maxsum += pricerdata->pi[i];
256
257 /* Calculate largest possible scalar value so that this sum is still representable using the type of TCLIQUE_WEIGHT (int).
258 * A buffer of nnodes+1 is used for roundoff errors. */
259 if ( maxsum == 0.0 )
260 maxscale = 1e20;
261 else
262 maxscale = (INT_MAX - nnodes - 1) / maxsum;
263
264 SCIP_CALL( SCIPcalcIntegralScalar(pricerdata->pi, nnodes, -MINDELTA, MAXDELTA, MAXDNOM, maxscale,
265 &pricerdata->scalefactor, &scalesuccess) );
266
267 /* if no nice denominator can be found, use the largest possible scaling value to reduce numerical issues */
268 if ( ! scalesuccess )
269 pricerdata->scalefactor = maxscale;
270
271 return SCIP_OKAY;
272}
273
274/** get scaled weight */
275static
277 SCIP_Real val, /**< value to be scaled */
278 SCIP_Real scalefactor, /**< scaling factor */
279 SCIP_Real mindelta /**< minimal delta value */
280 )
281{
282 SCIP_Real scaledval;
283 SCIP_Real downval;
284 SCIP_Real upval;
285 TCLIQUE_WEIGHT intval;
286
287 scaledval = val * scalefactor;
288 downval = EPSFLOOR(scaledval, 0.0); /*lint !e835*/
289 upval = EPSCEIL(scaledval, 0.0); /*lint !e835*/
290
291 if ( SCIPrelDiff(scaledval, upval) >= mindelta )
292 intval = (TCLIQUE_WEIGHT) upval;
293 else
294 intval = (TCLIQUE_WEIGHT) downval;
295
296 return intval;
297}
298
299/** generates improving variables using a stable set found by the algorithm for maximum weight clique,
300 * decides whether to stop generating cliques with the algorithm for maximum weight clique
301 */
302static
303TCLIQUE_NEWSOL(tcliqueNewsolPricer)
304{
305 SCIP_PRICERDATA* pricerdata;
306 int i;
307
308 assert(acceptsol != NULL);
309 assert(stopsolving != NULL);
310
311 pricerdata = (SCIP_PRICERDATA*)tcliquedata;
312
313 assert(pricerdata != NULL);
314 assert(pricerdata->scip != NULL);
315 assert(pricerdata->nstablesetsfound >= 0);
316 assert(pricerdata->scalefactor > 0);
317
318 *acceptsol = FALSE;
319 *stopsolving = FALSE;
320
321 /* if the stable set was already created in a former pricing round, we don't have to add it a second time */
322 if ( !COLORprobStableSetIsNew(pricerdata->scip, cliquenodes, ncliquenodes) )
323 return;
324
325 /* compute the index, at which the new stable set will be stored in the improvingstablesets-array */
326 pricerdata->actindex = (pricerdata->actindex+1)%(pricerdata->maxvarsround);
327
328 /* write the new improving stable set into the improvingstablesets-array */
329 pricerdata->nstablesetnodes[pricerdata->actindex] = ncliquenodes;
330 for ( i = 0; i < ncliquenodes; i++ )
331 pricerdata->improvingstablesets[pricerdata->actindex][i] = cliquenodes[i];
332
333 /* accept the solution as new incumbent */
334 *acceptsol = TRUE;
335
336 /* stop solving if we found maxvarsround variables and we are not proving optimality */
337 if ( ! pricerdata->onlybest && pricerdata->actindex+1 >= pricerdata->maxvarsround )
338 *stopsolving = TRUE;
339
340}/*lint !e715*/
341
342
343/*
344 * Callback methods of variable pricer
345 */
346
347/** copy method for pricer plugins (called when SCIP copies plugins) */
348static
349SCIP_DECL_PRICERCOPY(pricerCopyColoring)
350{ /*lint --e{715}*/
351 assert(scip != NULL);
352 assert(pricer != NULL);
353 assert(strcmp(SCIPpricerGetName(pricer), PRICER_NAME) == 0);
354
355 return SCIP_OKAY;
356}
357
358
359/** destructor of variable pricer to free user data (called when SCIP is exiting) */
360static
361SCIP_DECL_PRICERFREE(pricerFreeColoring)
362{
363 SCIP_PRICERDATA* pricerdata;
364
365 assert(scip != NULL);
366
367 /* get pricerdata */
368 pricerdata = SCIPpricerGetData(pricer);
369
370 /* free memory for pricerdata*/
371 if ( pricerdata != NULL )
372 {
373 SCIPfreeBlockMemory(scip, &pricerdata);
374 }
375
376 SCIPpricerSetData(pricer, NULL);
377 return SCIP_OKAY;
378}
379
380
381
382/** solving process initialization method of variable pricer (called when branch and bound process is about to begin) */
383static
384SCIP_DECL_PRICERINITSOL(pricerInitsolColoring)
385{
386 SCIP_PRICERDATA* pricerdata;
387
388 assert(scip != NULL);
389 assert(pricer != NULL);
390
391 pricerdata = SCIPpricerGetData(pricer);
392 assert(pricerdata != NULL);
393
394 /* set maximal number of variables to be priced in each round */
395 SCIP_CALL( SCIPsetIntParam(scip, "pricers/coloring/maxvarsround",
396 MAX(5,COLORprobGetNStableSets(scip))*MAX(50,COLORprobGetNNodes(scip))/50) ); /*lint !e666*/
397
398 pricerdata->bbnode = NULL;
399
400 /* allocate memory */
402
403 return SCIP_OKAY;
404}
405
406
407
408/** solving process deinitialization method of variable pricer (called before branch and bound process data is freed) */
409static
410SCIP_DECL_PRICEREXITSOL(pricerExitsolColoring)
411{
412 SCIP_PRICERDATA* pricerdata;
413 int i;
414
415 assert(scip != NULL);
416 assert(pricer != NULL);
417
418 pricerdata = SCIPpricerGetData(pricer);
419 assert(pricerdata != NULL);
420
421 /* free memory */
422 for ( i = 0; i < pricerdata->maxvarsround; i++ )
423 {
424 SCIPfreeBlockMemoryArray(scip, &(pricerdata->improvingstablesets[i]), pricerdata->improvingstablesetssize);
425 }
426 SCIPfreeBlockMemoryArray(scip, &(pricerdata->improvingstablesets), pricerdata->maxvarsround);
427 SCIPfreeBlockMemoryArray(scip, &(pricerdata->nstablesetnodes), pricerdata->maxvarsround);
429
430 return SCIP_OKAY;
431}
432
433
434
435
436/** reduced cost pricing method of variable pricer for feasible LPs */
437static
438SCIP_DECL_PRICERREDCOST(pricerRedcostColoring)
439{
440 SCIP_PRICERDATA* pricerdata; /* the data of the pricer */
441
442 TCLIQUE_GRAPH* graph; /* the current graph */
443 TCLIQUE_GRAPH* cgraph; /* the complementary graph, used for tclique-algorithm */
444 int nnodes; /* number of nodes in the graph */
445
446 int* sortednodes; /* array of the nodes, sorted in specific way, atm by decreasing dual-solution*/
447 SCIP_Real maxstablesetweightreal;/* weigth of the maximal stable set computed by the greedy */
448 SCIP_Bool indnode; /* boolean for greedy: is node independant? */
449
450 int* maxstablesetnodes; /* pointer to store nodes of the maximum weight clique */
451 int nmaxstablesetnodes; /* number of nodes in the maximum weight clique */
452 TCLIQUE_WEIGHT maxstablesetweight; /* weight of the maximum weight clique */
453 TCLIQUE_STATUS status; /* status of clique-computation */
454 SCIP_Real maxredcost;
455
456 SCIP_VAR* var; /* pointer to the new created variable */
457 int setnumber; /* index of the new created variable */
458
459 int i;
460 int j;
461
462 assert(scip != NULL);
463 assert(pricer != NULL);
464
465 /* get pricer data */
466 pricerdata = SCIPpricerGetData(pricer);
467 assert(pricerdata != NULL);
468
469 /* count down number of remaining pricing rounds at the current node */
470 if ( pricerdata->bbnode == SCIPgetCurrentNode(scip) )
471 {
472 if ( pricerdata->noderounds > 0 )
473 pricerdata->noderounds--;
474 }
475 else
476 {
477 if ( pricerdata->bbnode == NULL )
478 {
479 pricerdata->noderounds = pricerdata->maxroundsroot;
480 pricerdata->lowerbound = - SCIPinfinity(scip);
481 }
482 else
483 {
484 pricerdata->noderounds = pricerdata->maxroundsnode;
485 pricerdata->lowerbound = - SCIPinfinity(scip);
486 }
487 pricerdata->bbnode = SCIPgetCurrentNode(scip);
488 }
489 /* stop pricing if limit for pricing rounds reached */
490 if ( pricerdata->noderounds == 0 )
491 {
492 SCIPdebugMessage("maxrounds reached, pricing interrupted\n");
493
494 /* set result and lowerbound pointer */
495 *result = SCIP_DIDNOTRUN;
496 *lowerbound = pricerdata->lowerbound;
497
498 return SCIP_OKAY;
499 }
500
501 /* set result pointer */
502 *result = SCIP_SUCCESS;
503
504 /* get graph and number of nodes */
506 assert(graph != NULL);
507 nnodes = tcliqueGetNNodes(graph);
508
510
511 /* get constraints */
512 pricerdata->constraints = COLORprobGetConstraints(scip);
513
514 /* get dual solutions and save them in pi */
515 for ( i = 0; i < nnodes; i++)
516 {
517 pricerdata->pi[i] = SCIPgetDualsolSetppc(scip, pricerdata->constraints[i]);
518 }
519 pricerdata->nstablesetsfound = 0;
520 /* ......greedy-heuristic........ */
521 if ( pricerdata->usegreedy )
522 {
523 SCIP_CALL( SCIPallocBufferArray(scip, &sortednodes, nnodes) );
524 SCIP_CALL( SCIPallocBufferArray(scip, &maxstablesetnodes, nnodes) );
525 SCIP_CALL( sortNodes(scip, pricerdata->pi, nnodes, sortednodes) );
526
527 SCIPdebugMessage("starting greedy...\n");
528
529 /* insert first node */
530 maxstablesetnodes[0] = sortednodes[0];
531 nmaxstablesetnodes = 1;
532 maxstablesetweightreal = pricerdata->pi[sortednodes[0]];
533
534 for ( i = 1; i < nnodes; i++ )
535 {
536 /* test if node is independant to nodes in stable set */
537 indnode = TRUE;
538 for ( j = 0; j < nmaxstablesetnodes; j++ )
539 {
540 if ( tcliqueIsEdge(graph, sortednodes[i], maxstablesetnodes[j]) )
541 {
542 indnode = FALSE;
543 break;
544 }
545 }
546 /* if node is independant to nodes in stable set, insert it into stable set*/
547 if ( indnode )
548 {
549 maxstablesetnodes[nmaxstablesetnodes] = sortednodes[i];
550 nmaxstablesetnodes = nmaxstablesetnodes+1;
551 maxstablesetweightreal = maxstablesetweightreal + pricerdata->pi[sortednodes[i]];
552 }
553 }
554
555
556 SCIPdebugMessage("value of the greedy-heuristik: %f \n", maxstablesetweightreal);
557 setnumber = -1;
558 if ( SCIPisFeasGT(scip, maxstablesetweightreal, 1.0) && COLORprobStableSetIsNew(scip, maxstablesetnodes, nmaxstablesetnodes) )
559 {
560 SCIP_CALL( COLORprobAddNewStableSet(scip, maxstablesetnodes, nmaxstablesetnodes, &setnumber) );
561
562 assert(setnumber >= 0);
563 pricerdata->nstablesetnodes[pricerdata->nstablesetsfound] = nmaxstablesetnodes;
564 for ( i = 0; i < nmaxstablesetnodes; i++ )
565 {
566 pricerdata->improvingstablesets[pricerdata->nstablesetsfound][i] = maxstablesetnodes[i];
567 }
568 pricerdata->nstablesetsfound += 1;
569
570 /* create variable for the stable set and add it to SCIP */
571 SCIP_CALL( SCIPcreateVar(scip, &var, NULL, 0.0, 1.0, 1.0, SCIP_VARTYPE_BINARY,
572 TRUE, TRUE, NULL, NULL, NULL, NULL, (SCIP_VARDATA*)(size_t)setnumber) ); /*lint !e571*/
573
574 SCIP_CALL( COLORprobAddVarForStableSet(scip, setnumber, var) );
576 SCIP_CALL( SCIPaddPricedVar(scip, var, 1.0) );
577 SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );
578
579 /* add variable to the constraints in which it appears */
580 for ( i = 0; i < nmaxstablesetnodes; i++ )
581 {
582 /* add variable to node constraints of nodes in the set */
583 SCIP_CALL( SCIPaddCoefSetppc(scip, pricerdata->constraints[maxstablesetnodes[i]], var) );
584 }
585 }
586
587 SCIPfreeBufferArray(scip, &maxstablesetnodes);
588 SCIPfreeBufferArray(scip, &sortednodes);
589
590 SCIPdebugMessage("%d vars created via greedy\n", pricerdata->nstablesetsfound);
591 }
592
593
594 /* solve with tclique-algorithm */
595 /* only use tclique if the greedy found no improving stable set */
596 if ( pricerdata->nstablesetsfound == 0 && pricerdata->usetclique )
597 {
598 SCIPdebugMessage("starting tclique algorithm...\n");
599 maxredcost = 0;
600
601 /* get the complementary graph from the current cons */
603 SCIP_CALL( SCIPallocBufferArray(scip, &maxstablesetnodes, nnodes) );
604
605 /* get dual solutions and set weight of nodes */
606 /* clamp solutions to [0,1] for safety; numerical errors may be problematic */
607 for ( i = 0; i < nnodes; i++ )
608 {
609 SCIP_Real dualsol;
610
611 dualsol = SCIPgetDualsolSetppc(scip, pricerdata->constraints[i]);
612 pricerdata->pi[i] = MAX( MIN(dualsol, 1.0), 0.0);
613 }
614 SCIP_CALL( calculateScalingValue(pricerdata, nnodes) );
615
616 /* change the weights for the nodes in the graph to the dual solution value * scalefactor */
617 for ( i = 0; i < nnodes; i++ )
618 {
619 tcliqueChangeWeight(cgraph, i, getScaledDualWeight(pricerdata->pi[i], pricerdata->scalefactor, -MINDELTA)); /*lint !e712 !e747*/
620 }
621 /* clear the improvingstablesets array */
622 pricerdata->actindex = -1;
623 for ( i = 0; i < pricerdata->maxvarsround; i++ )
624 pricerdata->nstablesetnodes[i] = 0;
625
626 /* compute maximal clique */
627 tcliqueMaxClique(NULL, NULL, NULL, NULL, cgraph, tcliqueNewsolPricer, (TCLIQUE_DATA*)pricerdata, maxstablesetnodes,
628 &(nmaxstablesetnodes), &maxstablesetweight, 0,
629 getScaledDualWeight(1.0, pricerdata->scalefactor, -MINDELTA), pricerdata->maxtcliquenodes, 0, INT_MAX, -1,
630 NULL, &status);
631 assert(status == TCLIQUE_OPTIMAL || status == TCLIQUE_USERABORT);
632
633 /* if only the best variable should be priced per round, take the one which is given as return value from
634 * tcliqueMaxClique and put it into improvingstablesets array so that it will be inserted into the LP */
635 if ( pricerdata->onlybest && pricerdata->maxvarsround == 1 )
636 {
637 pricerdata->nstablesetnodes[0] = nmaxstablesetnodes;
638 for ( i = 0; i < nmaxstablesetnodes; i++ )
639 pricerdata->improvingstablesets[0][i] = maxstablesetnodes[i];
640 }
641
642 SCIPfreeBufferArray(scip, &maxstablesetnodes);
643
644 /* insert all variables in the array improvingstablesets into the LP */
645 for ( i = 0; i < pricerdata->maxvarsround; i++ )
646 {
647 if ( pricerdata->nstablesetnodes[i] > 0 )
648 {
649 maxstablesetweightreal = 0;
650 for ( j = 0; j < pricerdata->nstablesetnodes[i]; j++ )
651 maxstablesetweightreal += pricerdata->pi[pricerdata->improvingstablesets[i][j]];
652
653 if ( maxredcost < maxstablesetweightreal )
654 maxredcost = maxstablesetweightreal;
655
656 if ( SCIPisFeasGT(scip, maxstablesetweightreal, 1.0) )
657 {
658 setnumber = -1;
659
660 /* insert new variable */
661 SCIP_CALL( COLORprobAddNewStableSet(pricerdata->scip, pricerdata->improvingstablesets[i],
662 pricerdata->nstablesetnodes[i], &setnumber) );
663
664 /* only insert, if there yet is no variable for this stable set */
665 if ( setnumber >= 0 )
666 {
667 /* create variable for the stable set and add it to SCIP */
668 SCIP_CALL( SCIPcreateVar(pricerdata->scip, &var, NULL, 0.0, 1.0, 1.0, SCIP_VARTYPE_BINARY,
669 TRUE, TRUE, NULL, NULL, NULL, NULL, (SCIP_VARDATA*)(size_t)setnumber) ); /*lint !e571*/
670
671 SCIP_CALL( COLORprobAddVarForStableSet(pricerdata->scip, setnumber, var) );
673 SCIP_CALL( SCIPaddPricedVar(pricerdata->scip, var, 1.0) );
674 SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );
675
676 pricerdata->nstablesetsfound += 1;
677
678 /* add variable to the constraints in which it appears */
679 for ( j = 0; j < pricerdata->nstablesetnodes[i]; j++ )
680 {
681 /* add variable to node constraints of nodes in the set */
682 SCIP_CALL( SCIPaddCoefSetppc(pricerdata->scip,
683 pricerdata->constraints[pricerdata->improvingstablesets[i][j]], var) );
684 }
685 }
686 }
687 }
688 }
689
690 if ( status == TCLIQUE_OPTIMAL && SCIPisFeasGT(scip, maxredcost, 1.0) )
691 {
693 {
694 assert( maxredcost > 0.0 );
695 pricerdata->lowerbound = MAX(pricerdata->lowerbound, SCIPgetLPObjval(scip) / maxredcost); /*lint !e666*/
696 SCIP_CALL( SCIPupdateLocalLowerbound(scip,pricerdata->lowerbound) );
697 }
698 }
699 }
700
701 return SCIP_OKAY;
702}/*lint !e715*/
703
704
705/** farkas pricing method of variable pricer for infeasible LPs */
706static
707SCIP_DECL_PRICERFARKAS(pricerFarkasColoring)
708{
709 TCLIQUE_GRAPH* graph;
710 int nnodes; /* number of nodes */
711 int* maxstablesetnodes; /* array containig the nodes of the max stable set */
712 int nmaxstablesetnodes; /* number of nodes in stable set */
713 int setnumber; /* number of already found stable sets */
714 SCIP_VAR* var; /* var for the actual stable set */
715 SCIP_CONS** constraints; /* array of added constraints */
716 SCIP_Bool* colored; /* array for marking of yet colored nodes
717 colored_i = true iff node i is already colored */
718 int** stablesets;
719 int* nstablesetelements;
720 int nstablesets;
721 int i;
722 int j;
723 assert(scip != NULL);
724
726 assert(graph != NULL);
727
729 assert(nnodes > 0);
730
731 /* get the node-constraits */
732 constraints = COLORprobGetConstraints(scip);
733 assert(constraints != NULL);
734
735 /* get all yet computed stable sets */
736 COLORprobGetStableSets(scip, &stablesets, &nstablesetelements, &nstablesets);
737 assert(stablesets != NULL && nstablesetelements != NULL);
738 assert(nstablesets >= 0);
739 assert(nnodes == tcliqueGetNNodes(graph));
740
741 /* allocate memory for arrays */
743 SCIP_CALL( SCIPallocBufferArray( scip, &maxstablesetnodes, nnodes) );
744 nmaxstablesetnodes = 0;
745
746 /* fill colored-array with FALSE */
747 BMSclearMemoryArray(colored, nnodes);
748
749 /* go through all stable sets and set colored to true for nodes in them */
750 for ( i = 0; i < nstablesets; i++ )
751 {
755 {
756 for ( j = 0; j < nstablesetelements[i]; j++ )
757 {
758 colored[stablesets[i][j]] = TRUE;
759 }
760 }
761 }
762
763 /* create maximal Stable Sets until all Nodes are covered */
764 while ( hasUncoloredNode(graph, colored) )
765 {
766 SCIP_CALL( greedyStableSet(scip, graph, colored, maxstablesetnodes, &nmaxstablesetnodes) );
767 SCIPsortDownInt(maxstablesetnodes, nmaxstablesetnodes);
768 SCIP_CALL( COLORprobAddNewStableSet(scip, maxstablesetnodes, nmaxstablesetnodes, &setnumber) );
769 assert(setnumber != -1);
770
771 /* create variable for the stable set and add it to SCIP */
772 SCIP_CALL( SCIPcreateVar(scip, &var, NULL, 0.0, 1.0, 1.0, SCIP_VARTYPE_BINARY,
773 TRUE, TRUE, NULL, NULL, NULL, NULL, (SCIP_VARDATA*) (size_t) setnumber) ); /*lint !e571*/
774 SCIP_CALL( COLORprobAddVarForStableSet(scip, setnumber, var) );
776 SCIP_CALL( SCIPaddPricedVar(scip, var, 1.0) );
777 SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );
778
779 for ( i = 0; i < nmaxstablesetnodes; i++ )
780 {
781 /* add variable to node constraints of nodes in the set */
782 SCIP_CALL( SCIPaddCoefSetppc(scip, constraints[maxstablesetnodes[i]], var) );
783 /* mark node as colored */
784 colored[maxstablesetnodes[i]] = TRUE;
785 }
786 }
787 /* free memory */
788 SCIPfreeBufferArray(scip, &maxstablesetnodes);
789 SCIPfreeBufferArray(scip, &colored);
790
791 return SCIP_OKAY;
792}/*lint !e715*/
793
794/** method to call, when the maximal number of variables priced in each round is changed */
795static
796SCIP_DECL_PARAMCHGD(paramChgdMaxvarsround)
797{
798 SCIP_PARAMDATA* paramdata;
799 SCIP_PRICERDATA* pricerdata;
800 int i;
801
802 paramdata = SCIPparamGetData(param);
803 assert(paramdata != NULL);
804 pricerdata = (SCIP_PRICERDATA*) paramdata;
805
806 if( pricerdata->maxvarsround == pricerdata->oldmaxvarsround )
807 return SCIP_OKAY;
808
809 if ( pricerdata->maxvarsround <= 1 )
810 pricerdata->maxvarsround = 2;
811
812 if ( pricerdata->maxvarsround == pricerdata->oldmaxvarsround && pricerdata->nstablesetnodes != NULL )
813 return SCIP_OKAY;
814
815 /* free old memory */
816 if ( pricerdata -> oldmaxvarsround > 0 )
817 {
818 /* free memory */
819 for ( i = 0; i < pricerdata->oldmaxvarsround; i++ )
820 {
821 SCIPfreeBlockMemoryArray(scip, &(pricerdata->improvingstablesets[i]), pricerdata->improvingstablesetssize);
822 }
823 SCIPfreeBlockMemoryArray(scip, &(pricerdata->improvingstablesets), pricerdata->oldmaxvarsround);
824 SCIPfreeBlockMemoryArray(scip, &(pricerdata->nstablesetnodes), pricerdata->oldmaxvarsround);
825 }
826
827 /* allocate memory of the new size */
828 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(pricerdata->nstablesetnodes), pricerdata->maxvarsround) );
829 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(pricerdata->improvingstablesets), pricerdata->maxvarsround) );
830 pricerdata->improvingstablesetssize = COLORprobGetNNodes(scip);
831 for ( i = 0; i < pricerdata->maxvarsround; i++ )
832 {
833 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(pricerdata->improvingstablesets[i]), pricerdata->improvingstablesetssize) ); /*lint !e866*/
834 }
835
836 SCIPdebugMessage("maxvarsround changed from %d to %d\n", pricerdata->oldmaxvarsround, pricerdata->maxvarsround);
837
838 pricerdata->oldmaxvarsround = pricerdata->maxvarsround;
839
840 return SCIP_OKAY;
841}
842
843
844/*
845 * variable pricer specific interface methods
846 */
847
848/** creates the coloring variable pricer and includes it in SCIP */
850 SCIP* scip /**< SCIP data structure */
851 )
852{
853 SCIP_PRICERDATA* pricerdata;
854 SCIP_PRICER* pricer;
855
856 SCIP_CALL( SCIPallocBlockMemory(scip, &pricerdata) );
857 pricerdata->scip = scip;
858
859 pricerdata->maxvarsround = 0;
860 pricerdata->oldmaxvarsround = 0;
861
862
863 pricer = NULL;
864 /* include variable pricer */
866 pricerRedcostColoring, pricerFarkasColoring, pricerdata) );
867 assert(pricer != NULL);
868
869 /* include non-fundamental callbacks via setter functions */
870 SCIP_CALL( SCIPsetPricerCopy(scip, pricer, pricerCopyColoring) );
871 SCIP_CALL( SCIPsetPricerFree(scip, pricer, pricerFreeColoring) );
872 SCIP_CALL( SCIPsetPricerInitsol(scip, pricer, pricerInitsolColoring) );
873 SCIP_CALL( SCIPsetPricerExitsol(scip, pricer, pricerExitsolColoring) );
874
876 "pricers/coloring/maxvarsround",
877 "maximum number of variables that the coloring variable pricer creates each round",
878 &pricerdata->maxvarsround, TRUE, DEFAULT_MAXVARSROUND, -1, INT_MAX, paramChgdMaxvarsround, (SCIP_PARAMDATA*)pricerdata) );
879
881 "pricers/coloring/usetclique",
882 "should the tclique-algorithm be used to solve the pricing-problem to optimality? WARNING: computed (optimal) solutions are not necessarily optimal if this is set to FALSE.",
883 &pricerdata->usetclique, TRUE, DEFAULT_USETCLIQUE, NULL, NULL) );
884
886 "pricers/coloring/usegreedy",
887 "should a greedy method be used to compute improving stable sets before potential use of tclique",
888 &pricerdata->usegreedy, FALSE, DEFAULT_USEGREEDY, NULL, NULL) );
889
891 "pricers/coloring/onlybest",
892 "should the best variables be addded to the problem instead of adding the first found variables?",
893 &pricerdata->onlybest, FALSE, DEFAULT_ONLYBEST, NULL, NULL) );
894
896 "pricers/coloring/maxroundsroot",
897 "maximum number of pricing rounds in the root node (-1: no limit)",
898 &pricerdata->maxroundsroot, TRUE, DEFAULT_MAXROUNDSROOT, -1, INT_MAX, NULL, NULL) );
899
901 "pricers/coloring/maxroundsnode",
902 "maximum number of pricing rounds in each node (except root node)(-1: no limit)",
903 &pricerdata->maxroundsnode, TRUE, DEFAULT_MAXROUNDSNODE, -1, INT_MAX, NULL, NULL) );
904
906 "pricers/coloring/maxtcliquenodes",
907 "maximum number of B&B-nodes used in the tclique-algorithm",
908 &pricerdata->maxtcliquenodes, TRUE, DEFAULT_MAXTCLIQUENODES, 0, INT_MAX, NULL, NULL) );
909
910 return SCIP_OKAY;
911}
TCLIQUE_GRAPH * COLORconsGetCurrentGraph(SCIP *scip)
TCLIQUE_GRAPH * COLORconsGetComplementaryGraph(SCIP *scip)
constraint handler for storing the graph at each node of the tree
#define NULL
Definition: def.h:266
#define SCIP_Bool
Definition: def.h:91
#define MIN(x, y)
Definition: def.h:242
#define SCIP_Real
Definition: def.h:172
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define MAX(x, y)
Definition: def.h:238
#define EPSCEIL(x, eps)
Definition: def.h:206
#define EPSFLOOR(x, eps)
Definition: def.h:205
#define SCIP_CALL(x)
Definition: def.h:373
#define nnodes
Definition: gastrans.c:74
SCIP_RETCODE SCIPaddCoefSetppc(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_setppc.c:9539
SCIP_Real SCIPgetDualsolSetppc(SCIP *scip, SCIP_CONS *cons)
Definition: cons_setppc.c:9630
SCIP_RETCODE SCIPaddPricedVar(SCIP *scip, SCIP_VAR *var, SCIP_Real score)
Definition: scip_prob.c:1733
int SCIPgetNVars(SCIP *scip)
Definition: scip_prob.c:1992
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3697
SCIP_RETCODE SCIPcalcIntegralScalar(SCIP_Real *vals, int nvals, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: misc.c:9560
SCIP_Real SCIPrelDiff(SCIP_Real val1, SCIP_Real val2)
Definition: misc.c:11215
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPsetIntParam(SCIP *scip, const char *name, int value)
Definition: scip_param.c:487
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_LPSOLSTAT SCIPgetLPSolstat(SCIP *scip)
Definition: scip_lp.c:168
SCIP_Real SCIPgetLPObjval(SCIP *scip)
Definition: scip_lp.c:247
#define SCIPfreeBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:110
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
#define SCIPallocBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:93
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
SCIP_RETCODE SCIPsetPricerCopy(SCIP *scip, SCIP_PRICER *pricer, SCIP_DECL_PRICERCOPY((*pricercopy)))
Definition: scip_pricer.c:175
SCIP_RETCODE SCIPsetPricerInitsol(SCIP *scip, SCIP_PRICER *pricer, SCIP_DECL_PRICERINITSOL((*pricerinitsol)))
Definition: scip_pricer.c:271
SCIP_RETCODE SCIPsetPricerExitsol(SCIP *scip, SCIP_PRICER *pricer, SCIP_DECL_PRICEREXITSOL((*pricerexitsol)))
Definition: scip_pricer.c:295
void SCIPpricerSetData(SCIP_PRICER *pricer, SCIP_PRICERDATA *pricerdata)
Definition: pricer.c:523
SCIP_PRICERDATA * SCIPpricerGetData(SCIP_PRICER *pricer)
Definition: pricer.c:513
const char * SCIPpricerGetName(SCIP_PRICER *pricer)
Definition: pricer.c:600
SCIP_RETCODE SCIPsetPricerFree(SCIP *scip, SCIP_PRICER *pricer, SCIP_DECL_PRICERFREE((*pricerfree)))
Definition: scip_pricer.c:199
SCIP_RETCODE SCIPincludePricerBasic(SCIP *scip, SCIP_PRICER **pricerptr, const char *name, const char *desc, int priority, SCIP_Bool delay, SCIP_DECL_PRICERREDCOST((*pricerredcost)), SCIP_DECL_PRICERFARKAS((*pricerfarkas)), SCIP_PRICERDATA *pricerdata)
Definition: scip_pricer.c:127
SCIP_Longint SCIPgetNNodes(SCIP *scip)
SCIP_Real SCIPinfinity(SCIP *scip)
SCIP_Bool SCIPisFeasZero(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_NODE * SCIPgetCurrentNode(SCIP *scip)
Definition: scip_tree.c:91
SCIP_NODE * SCIPgetRootNode(SCIP *scip)
Definition: scip_tree.c:110
SCIP_Real SCIPvarGetUbLocal(SCIP_VAR *var)
Definition: var.c:18143
void SCIPvarMarkDeletable(SCIP_VAR *var)
Definition: var.c:17651
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:114
SCIP_RETCODE SCIPchgVarUbLazy(SCIP *scip, SCIP_VAR *var, SCIP_Real lazyub)
Definition: scip_var.c:5287
SCIP_Bool SCIPvarIsInLP(SCIP_VAR *var)
Definition: var.c:17799
void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPsortDownInt(int *intarray, int len)
#define BMSclearMemoryArray(ptr, num)
Definition: memory.h:130
SCIP_PARAMDATA * SCIPparamGetData(SCIP_PARAM *param)
Definition: paramset.c:679
#define MAXDNOM
static SCIP_RETCODE greedyStableSet(SCIP *scip, TCLIQUE_GRAPH *graph, SCIP_Bool *colored, int *maxstablesetnodes, int *nmaxstablesetnodes)
static SCIP_DECL_PRICERINITSOL(pricerInitsolColoring)
static SCIP_DECL_PARAMCHGD(paramChgdMaxvarsround)
#define DEFAULT_MAXROUNDSROOT
#define MAXDELTA
#define DEFAULT_MAXVARSROUND
#define PRICER_PRIORITY
static SCIP_DECL_PRICERREDCOST(pricerRedcostColoring)
static SCIP_DECL_PRICERFARKAS(pricerFarkasColoring)
#define PRICER_NAME
static SCIP_RETCODE calculateScalingValue(SCIP_PRICERDATA *pricerdata, int nnodes)
static SCIP_DECL_PRICERCOPY(pricerCopyColoring)
#define DEFAULT_USETCLIQUE
#define MINDELTA
static TCLIQUE_WEIGHT getScaledDualWeight(SCIP_Real val, SCIP_Real scalefactor, SCIP_Real mindelta)
SCIP_RETCODE SCIPincludePricerColoring(SCIP *scip)
#define DEFAULT_ONLYBEST
static SCIP_DECL_PRICERFREE(pricerFreeColoring)
#define DEFAULT_USEGREEDY
static TCLIQUE_NEWSOL(tcliqueNewsolPricer)
#define PRICER_DELAY
static SCIP_DECL_PRICEREXITSOL(pricerExitsolColoring)
#define DEFAULT_MAXTCLIQUENODES
static SCIP_RETCODE sortNodes(SCIP *scip, SCIP_Real *weights, int nnodes, int *sortednodes)
static SCIP_Bool hasUncoloredNode(TCLIQUE_GRAPH *graph, SCIP_Bool *colored)
#define DEFAULT_MAXROUNDSNODE
#define PRICER_DESC
variable pricer for the vertex coloring problem
SCIP_CONS ** COLORprobGetConstraints(SCIP *scip)
SCIP_RETCODE COLORprobAddNewStableSet(SCIP *scip, int *stablesetnodes, int nstablesetnodes, int *setindex)
int COLORprobGetNNodes(SCIP *scip)
SCIP_VAR * COLORprobGetVarForStableSet(SCIP *scip, int setindex)
void COLORprobGetStableSets(SCIP *scip, int ***stablesets, int **nelements, int *nstablesets)
SCIP_Bool COLORprobStableSetIsNew(SCIP *scip, int *stablesetnodes, int nstablesetnodes)
SCIP_RETCODE COLORprobAddVarForStableSet(SCIP *scip, int setindex, SCIP_VAR *var)
int COLORprobGetNStableSets(SCIP *scip)
#define SCIPdebugMessage
Definition: pub_message.h:96
file reader for vertex coloring instances
SCIP * scip
Definition: cons_sos1.c:237
@ TCLIQUE_USERABORT
Definition: tclique.h:65
@ TCLIQUE_OPTIMAL
Definition: tclique.h:66
void tcliqueChangeWeight(TCLIQUE_GRAPH *tcliquegraph, int node, TCLIQUE_WEIGHT weight)
int * tcliqueGetDegrees(TCLIQUE_GRAPH *tcliquegraph)
enum TCLIQUE_Status TCLIQUE_STATUS
Definition: tclique.h:68
int TCLIQUE_WEIGHT
Definition: tclique.h:48
void tcliqueMaxClique(TCLIQUE_GETNNODES((*getnnodes)), TCLIQUE_GETWEIGHTS((*getweights)), TCLIQUE_ISEDGE((*isedge)), TCLIQUE_SELECTADJNODES((*selectadjnodes)), TCLIQUE_GRAPH *tcliquegraph, TCLIQUE_NEWSOL((*newsol)), TCLIQUE_DATA *tcliquedata, int *maxcliquenodes, int *nmaxcliquenodes, TCLIQUE_WEIGHT *maxcliqueweight, TCLIQUE_WEIGHT maxfirstnodeweight, TCLIQUE_WEIGHT minweight, int maxntreenodes, int backtrackfreq, int maxnzeroextensions, int fixednode, int *ntreenodes, TCLIQUE_STATUS *status)
struct TCLIQUE_Graph TCLIQUE_GRAPH
Definition: tclique.h:49
@ SCIP_LPSOLSTAT_OPTIMAL
Definition: type_lp.h:43
struct SCIP_ParamData SCIP_PARAMDATA
Definition: type_paramset.h:87
struct SCIP_PricerData SCIP_PRICERDATA
Definition: type_pricer.h:45
@ SCIP_DIDNOTRUN
Definition: type_result.h:42
@ SCIP_SUCCESS
Definition: type_result.h:58
@ SCIP_OKAY
Definition: type_retcode.h:42
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
struct SCIP_VarData SCIP_VARDATA
Definition: type_var.h:120
@ SCIP_VARTYPE_BINARY
Definition: type_var.h:62