Scippy

SCIP

Solving Constraint Integer Programs

sepa_aggregation.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file sepa_aggregation.c
26 * @ingroup DEFPLUGINS_SEPA
27 * @brief flow cover and complemented mixed integer rounding cuts separator (Marchand's version)
28 * @author Leona Gottwald
29 * @author Kati Wolter
30 * @author Tobias Achterberg
31 *
32 * For an overview see:
33 *
34 * Marchand, H., & Wolsey, L. A. (2001).@n
35 * Aggregation and mixed integer rounding to solve MIPs.@n
36 * Operations research, 49(3), 363-371.
37 *
38 * Some remarks:
39 * - In general, continuous variables are less prefered than integer variables, since their cut
40 * coefficient is worse.
41 * - We seek for aggregations that project out continuous variables that are far away from their bound,
42 * since if it is at its bound then it doesn't contribute to the violation
43 * - These aggregations are also useful for the flowcover separation, so after building an aggregation
44 * we try to generate a MIR cut and a flowcover cut.
45 * - We only keep the best cut.
46 */
47
48/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
49
51#include "scip/cuts.h"
52#include "scip/pub_lp.h"
53#include "scip/pub_message.h"
54#include "scip/pub_misc.h"
55#include "scip/pub_misc_sort.h"
56#include "scip/pub_sepa.h"
57#include "scip/pub_var.h"
58#include "scip/scip_branch.h"
59#include "scip/scip_cut.h"
60#include "scip/scip_general.h"
61#include "scip/scip_lp.h"
62#include "scip/scip_mem.h"
63#include "scip/scip_message.h"
64#include "scip/scip_numerics.h"
65#include "scip/scip_param.h"
66#include "scip/scip_prob.h"
67#include "scip/scip_sepa.h"
68#include "scip/scip_sol.h"
70#include "scip/scip_tree.h"
71#include "scip/scip_var.h"
73#include <string.h>
74
75
76#define SEPA_NAME "aggregation"
77#define SEPA_DESC "aggregation heuristic for complemented mixed integer rounding cuts and flowcover cuts"
78#define SEPA_PRIORITY -3000
79#define SEPA_FREQ 10
80#define SEPA_MAXBOUNDDIST 1.0
81#define SEPA_USESSUBSCIP FALSE /**< does the separator use a secondary SCIP instance? */
82#define SEPA_DELAY FALSE /**< should separation method be delayed, if other separators found cuts? */
83
84#define DEFAULT_MAXROUNDS -1 /**< maximal number of cmir separation rounds per node (-1: unlimited) */
85#define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of cmir separation rounds in the root node (-1: unlimited) */
86#define DEFAULT_MAXTRIES 200 /**< maximal number of rows to start aggregation with per separation round
87 * (-1: unlimited) */
88#define DEFAULT_MAXTRIESROOT -1 /**< maximal number of rows to start aggregation with per round in the root node
89 * (-1: unlimited) */
90#define DEFAULT_MAXFAILS 20 /**< maximal number of consecutive unsuccessful aggregation tries (-1: unlimited) */
91#define DEFAULT_MAXFAILSROOT 100 /**< maximal number of consecutive unsuccessful aggregation tries in the root node
92 * (-1: unlimited) */
93#define DEFAULT_MAXAGGRS 3 /**< maximal number of aggregations for each row per separation round */
94#define DEFAULT_MAXAGGRSROOT 6 /**< maximal number of aggregations for each row per round in the root node */
95#define DEFAULT_MAXSEPACUTS 100 /**< maximal number of cmir cuts separated per separation round */
96#define DEFAULT_MAXSEPACUTSROOT 500 /**< maximal number of cmir cuts separated per separation round in root node */
97#define DEFAULT_MAXSLACK 0.0 /**< maximal slack of rows to be used in aggregation */
98#define DEFAULT_MAXSLACKROOT 0.1 /**< maximal slack of rows to be used in aggregation in the root node */
99#define DEFAULT_DENSITYSCORE 1e-4 /**< weight of row density in the aggregation scoring of the rows */
100#define DEFAULT_SLACKSCORE 1e-3 /**< weight of slack in the aggregation scoring of the rows */
101#define DEFAULT_MAXAGGDENSITY 0.20 /**< maximal density of aggregated row */
102#define DEFAULT_MAXROWDENSITY 0.05 /**< maximal density of row to be used in aggregation */
103#define DEFAULT_DENSITYOFFSET 100 /**< additional number of variables allowed in row on top of density */
104#define DEFAULT_MAXROWFAC 1e+4 /**< maximal row aggregation factor */
105#define DEFAULT_MAXTESTDELTA -1 /**< maximal number of different deltas to try (-1: unlimited) */
106#define DEFAULT_AGGRTOL 1e-2 /**< aggregation heuristic: we try to delete continuous variables from the current
107 * aggregation, whose distance to its tightest bound is >= L - DEFAULT_AGGRTOL,
108 * where L is the largest of the distances between a continuous variable's value
109 * and its tightest bound in the current aggregation */
110#define DEFAULT_TRYNEGSCALING TRUE /**< should negative values also be tested in scaling? */
111#define DEFAULT_FIXINTEGRALRHS TRUE /**< should an additional variable be complemented if f0 = 0? */
112#define DEFAULT_DYNAMICCUTS TRUE /**< should generated cuts be removed from the LP if they are no longer tight? */
113
114#define BOUNDSWITCH 0.5
115#define POSTPROCESS TRUE
116#define USEVBDS TRUE
117#define MINFRAC 0.05
118#define MAXFRAC 0.999
119#define MAKECONTINTEGRAL FALSE
120#define IMPLINTSARECONT
121
122
123/*
124 * Data structures
125 */
126
127/** separator data */
128struct SCIP_SepaData
129{
130 SCIP_Real maxslack; /**< maximal slack of rows to be used in aggregation */
131 SCIP_Real maxslackroot; /**< maximal slack of rows to be used in aggregation in the root node */
132 SCIP_Real densityscore; /**< weight of row density in the aggregation scoring of the rows */
133 SCIP_Real slackscore; /**< weight of slack in the aggregation scoring of the rows */
134 SCIP_Real maxaggdensity; /**< maximal density of aggregated row */
135 SCIP_Real maxrowdensity; /**< maximal density of row to be used in aggregation */
136 SCIP_Real maxrowfac; /**< maximal row aggregation factor */
137 SCIP_Real aggrtol; /**< tolerance for bound distance used in aggregation heuristic */
138 int maxrounds; /**< maximal number of cmir separation rounds per node (-1: unlimited) */
139 int maxroundsroot; /**< maximal number of cmir separation rounds in the root node (-1: unlimited) */
140 int maxtries; /**< maximal number of rows to start aggregation with per separation round
141 * (-1: unlimited) */
142 int maxtriesroot; /**< maximal number of rows to start aggregation with per round in the root node
143 * (-1: unlimited) */
144 int maxfails; /**< maximal number of consecutive unsuccessful aggregation tries
145 * (-1: unlimited) */
146 int maxfailsroot; /**< maximal number of consecutive unsuccessful aggregation tries in the root
147 * node (-1: unlimited) */
148 int maxaggrs; /**< maximal number of aggregations for each row per separation round */
149 int maxaggrsroot; /**< maximal number of aggregations for each row per round in the root node */
150 int maxsepacuts; /**< maximal number of cmir cuts separated per separation round */
151 int maxsepacutsroot; /**< maximal number of cmir cuts separated per separation round in root node */
152 int densityoffset; /**< additional number of variables allowed in row on top of density */
153 int maxtestdelta; /**< maximal number of different deltas to try (-1: unlimited) */
154 SCIP_Bool trynegscaling; /**< should negative values also be tested in scaling? */
155 SCIP_Bool fixintegralrhs; /**< should an additional variable be complemented if f0 = 0? */
156 SCIP_Bool dynamiccuts; /**< should generated cuts be removed from the LP if they are no longer tight? */
157 SCIP_Bool sepflowcover; /**< whether flowcover cuts should be separated in the current call */
158 SCIP_Bool sepknapsackcover; /**< whether knapsack cover cuts should be separated in the current call */
159 SCIP_Bool sepcmir; /**< whether cMIR cuts should be separated in the current call */
160 SCIP_SEPA* cmir; /**< separator for adding cmir cuts */
161 SCIP_SEPA* flowcover; /**< separator for adding flowcover cuts */
162 SCIP_SEPA* knapsackcover; /**< separator for adding knapsack cover cuts */
163};
164
165/** data used for aggregation of row */
166typedef
167struct AggregationData {
168 SCIP_Real* bounddist; /**< bound distance of continuous variables */
169 int* bounddistinds; /**< problem indices of the continUous variables corresponding to the bounddistance value */
170 int nbounddistvars; /**< number of continuous variables that are not at their bounds */
171 SCIP_ROW** aggrrows; /**< array of rows suitable for substitution of continuous variable */
172 SCIP_Real* aggrrowscoef; /**< coefficient of continuous variable in row that is suitable for substitution of that variable */
173 int aggrrowssize; /**< size of aggrrows array */
174 int naggrrows; /**< occupied positions in aggrrows array */
175 int* aggrrowsstart; /**< array with start positions of suitable rows for substitution for each
176 * continuous variable with non-zero bound distance */
177 int* ngoodaggrrows; /**< array with number of rows suitable for substitution that only contain
178 * one continuous variable that is not at it's bound */
179 int* nbadvarsinrow; /**< number of continuous variables that are not at their bounds for each row */
180 SCIP_AGGRROW* aggrrow; /**< store aggregation row here so that it can be reused */
182
183/*
184 * Local methods
185 */
186
187/** adds given cut to LP if violated */
188static
190 SCIP* scip, /**< SCIP data structure */
191 SCIP_SOL* sol, /**< the solution that should be separated, or NULL for LP solution */
192 SCIP_SEPA* sepa, /**< separator */
193 SCIP_Bool makeintegral, /**< should cut be scaled to integral coefficients if possible? */
194 SCIP_Real* cutcoefs, /**< coefficients of active variables in cut */
195 int* cutinds, /**< problem indices of variables in cut */
196 int cutnnz, /**< number of non-zeros in cut */
197 SCIP_Real cutrhs, /**< right hand side of cut */
198 SCIP_Real cutefficacy, /**< efficacy of cut */
199 SCIP_Bool cutislocal, /**< is the cut only locally valid? */
200 SCIP_Bool cutremovable, /**< should the cut be removed from the LP due to aging or cleanup? */
201 int cutrank, /**< rank of the cut */
202 const char* cutclassname, /**< name of cut class to use for row names */
203 SCIP_Bool* cutoff, /**< whether a cutoff has been detected */
204 int* ncuts, /**< pointer to count the number of added cuts */
205 SCIP_ROW** thecut /**< pointer to return cut if it was added */
206 )
207{
208 assert(scip != NULL);
209 assert(cutcoefs != NULL);
210 assert(cutoff != NULL);
211 assert(ncuts != NULL);
212
213 *cutoff = FALSE;
214
215 if( cutnnz > 0 && SCIPisEfficacious(scip, cutefficacy) )
216 {
217 SCIP_VAR** vars;
218 int i;
219 SCIP_ROW* cut;
220 char cutname[SCIP_MAXSTRLEN];
221 SCIP_Bool success;
222
223 /* get active problem variables */
224 vars = SCIPgetVars(scip);
225
226 /* create cut name */
227 (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "%s%" SCIP_LONGINT_FORMAT "_%d", cutclassname, SCIPgetNLPs(scip), *ncuts);
228
229tryagain:
230 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, cutremovable) );
231
233
234 for( i = 0; i < cutnnz; ++i )
235 {
236 SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[cutinds[i]], cutcoefs[i]) );
237 }
238
239 /* set cut rank */
240 SCIProwChgRank(cut, cutrank);
241
242 SCIPdebugMsg(scip, " -> found potential %s cut <%s>: rhs=%f, eff=%f\n", cutclassname, cutname, cutrhs, cutefficacy);
244
245 /* if requested, try to scale the cut to integral values but only if the scaling is small; otherwise keep the fractional cut */
246 if( makeintegral && SCIPgetRowNumIntCols(scip, cut) == SCIProwGetNNonz(cut) )
247 {
249 1000LL, 1000.0, MAKECONTINTEGRAL, &success) );
250
252 {
253 /* release the row */
254 SCIP_CALL( SCIPreleaseRow(scip, &cut) );
255
256 /* the scaling destroyed the cut, so try to add it again, but this time do not scale it */
257 makeintegral = FALSE;
258 goto tryagain;
259 }
260 }
261 else
262 {
263 success = FALSE;
264 }
265
266 if( success && !SCIPisCutEfficacious(scip, sol, cut) )
267 {
268 SCIPdebugMsg(scip, " -> %s cut <%s> no longer efficacious: rhs=%f, eff=%f\n", cutclassname, cutname, cutrhs, cutefficacy);
270
271 SCIP_CALL( SCIPreleaseRow(scip, &cut) );
272
273 /* the cut is not efficacious anymore due to the scaling, so do not add it */
274 return SCIP_OKAY;
275 }
276
277 SCIPdebugMsg(scip, " -> found %s cut <%s>: rhs=%f, eff=%f, rank=%d, min=%f, max=%f (range=%g)\n",
278 cutclassname, cutname, cutrhs, cutefficacy, SCIProwGetRank(cut),
282
284
285 if( SCIPisCutNew(scip, cut) )
286 {
287 (*ncuts)++;
288
289 if( !cutislocal )
290 {
292 }
293 else
294 {
295 SCIP_CALL( SCIPaddRow(scip, cut, FALSE, cutoff) );
296 }
297
298 *thecut = cut;
299 }
300 else
301 {
302 /* release the row */
303 SCIP_CALL( SCIPreleaseRow(scip, &cut) );
304 }
305 }
306
307 return SCIP_OKAY;
308}
309
310/** setup data for aggregating rows */
311static
313 SCIP* scip, /**< SCIP data structure */
314 SCIP_SOL* sol, /**< solution to separate, NULL for LP solution */
315 SCIP_Bool allowlocal, /**< should local cuts be allowed */
316 AGGREGATIONDATA* aggrdata /**< pointer to aggregation data to setup */
317 )
318{
319 SCIP_VAR** vars;
320 int nvars;
321 int nbinvars;
322 int nintvars;
323 int ncontvars;
324 int firstcontvar;
325 int nimplvars;
326 SCIP_ROW** rows;
327 int nrows;
328 int i;
329
330 SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, &nimplvars, &ncontvars) );
331 SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
332
333 SCIP_CALL( SCIPallocBufferArray(scip, &aggrdata->bounddist, ncontvars + nimplvars) );
334 SCIP_CALL( SCIPallocBufferArray(scip, &aggrdata->bounddistinds, ncontvars + nimplvars) );
335 SCIP_CALL( SCIPallocBufferArray(scip, &aggrdata->ngoodaggrrows, ncontvars + nimplvars) );
336 SCIP_CALL( SCIPallocBufferArray(scip, &aggrdata->aggrrowsstart, ncontvars + nimplvars + 1) );
337 SCIP_CALL( SCIPallocBufferArray(scip, &aggrdata->nbadvarsinrow, nrows) );
338 SCIP_CALL( SCIPaggrRowCreate(scip, &aggrdata->aggrrow) );
339 assert( aggrdata->aggrrow != NULL );
340 BMSclearMemoryArray(aggrdata->nbadvarsinrow, nrows);
341
342 aggrdata->nbounddistvars = 0;
343 aggrdata->aggrrows = NULL;
344 aggrdata->aggrrowscoef = NULL;
345 aggrdata->aggrrowssize = 0;
346 aggrdata->naggrrows = 0;
347
348 firstcontvar = nvars - ncontvars;
349
350 for( i = nbinvars + nintvars; i < nvars; ++i )
351 {
352 SCIP_Real bounddist;
353 SCIP_Real primsol;
354 SCIP_Real distlb;
355 SCIP_Real distub;
356 SCIP_Real bestlb;
357 SCIP_Real bestub;
358 SCIP_Real bestvlb;
359 SCIP_Real bestvub;
360 int bestvlbidx;
361 int bestvubidx;
362
363 /* compute the bound distance of the variable */
364 if( allowlocal )
365 {
366 bestlb = SCIPvarGetLbLocal(vars[i]);
367 bestub = SCIPvarGetUbLocal(vars[i]);
368 }
369 else
370 {
371 bestlb = SCIPvarGetLbGlobal(vars[i]);
372 bestub = SCIPvarGetUbGlobal(vars[i]);
373 }
374
375 SCIP_CALL( SCIPgetVarClosestVlb(scip, vars[i], sol, &bestvlb, &bestvlbidx) );
376 SCIP_CALL( SCIPgetVarClosestVub(scip, vars[i], sol, &bestvub, &bestvubidx) );
377 if( bestvlbidx >= 0 )
378 bestlb = MAX(bestlb, bestvlb);
379 if( bestvubidx >= 0 )
380 bestub = MIN(bestub, bestvub);
381
382 primsol = SCIPgetSolVal(scip, sol, vars[i]);
383 distlb = primsol - bestlb;
384 distub = bestub - primsol;
385
386 bounddist = MIN(distlb, distub);
387 bounddist = MAX(bounddist, 0.0);
388
389 /* prefer continuous variables over implicit integers to be aggregated out */
390 if( i < firstcontvar )
391 bounddist *= 0.1;
392
393 /* when variable is not at its bound, we want to project it out, so add it to the aggregation data */
394 if( !SCIPisZero(scip, bounddist) )
395 {
396 int k = aggrdata->nbounddistvars++;
397
398 aggrdata->bounddist[k] = bounddist;
399 aggrdata->bounddistinds[k] = i;
400 aggrdata->aggrrowsstart[k] = aggrdata->naggrrows;
401
402 /* the current variable is a bad variable (continuous, not at its bound): increase the number of bad variable
403 * count on each row this variables appears in; also each of these rows can be used to project the variable out
404 * so store them.
405 */
406 if( SCIPvarIsInLP(vars[i]) )
407 {
408 SCIP_COL* col = SCIPvarGetCol(vars[i]);
409 SCIP_ROW** colrows = SCIPcolGetRows(col);
410 SCIP_Real* colrowvals = SCIPcolGetVals(col);
411 int ncolnonzeros = SCIPcolGetNLPNonz(col);
412 int aggrrowsminsize = aggrdata->naggrrows + ncolnonzeros;
413
414 if( aggrrowsminsize > aggrdata->aggrrowssize )
415 {
416 SCIP_CALL( SCIPreallocBufferArray(scip, &aggrdata->aggrrows, aggrrowsminsize) );
417 SCIP_CALL( SCIPreallocBufferArray(scip, &aggrdata->aggrrowscoef, aggrrowsminsize) );
418 aggrdata->aggrrowssize = aggrrowsminsize;
419 }
420 assert(aggrdata->aggrrows != NULL || aggrdata->aggrrowssize == 0);
421 assert(aggrdata->aggrrowscoef != NULL || aggrdata->aggrrowssize == 0);
422 assert(aggrdata->aggrrowssize > 0 || ncolnonzeros == 0);
423
424 for( k = 0; k < ncolnonzeros; ++k )
425 {
426 /* ignore modifiable rows and local rows if those are not permitted */
427 if( SCIProwIsModifiable(colrows[k]) || (!allowlocal && SCIProwIsLocal(colrows[k])) )
428 continue;
429
430 ++aggrdata->nbadvarsinrow[SCIProwGetLPPos(colrows[k])];
431 assert(aggrdata->aggrrows != NULL); /* for lint */
432 assert(aggrdata->aggrrowscoef != NULL);
433 /* coverity[var_deref_op] */
434 aggrdata->aggrrows[aggrdata->naggrrows] = colrows[k];
435 aggrdata->aggrrowscoef[aggrdata->naggrrows] = colrowvals[k];
436 ++aggrdata->naggrrows;
437 }
438 }
439 }
440 }
441
442 /* add sentinel entry at the end */
443 aggrdata->aggrrowsstart[aggrdata->nbounddistvars] = aggrdata->naggrrows;
444
445 /* for each continous variable that is not at its bounds check if there is a
446 * row where it is the only such variable ("good" rows). In the array with the rows that are
447 * suitable for substituting this variable move the good rows to the beginning
448 * and store the number of good rows for each of the variables.
449 * If a variable has at least one good row, then it is a "better" variable and we make
450 * the value of the bounddistance for this variable negative, to mark it.
451 * Note that better variables are continous variables that are not at their bounds
452 * and can be projected out without introducing bad variables (by using a good row).
453 */
454 {
455 int beg;
456
457 beg = aggrdata->aggrrowsstart[0];
458 for( i = 0; i < aggrdata->nbounddistvars; ++i )
459 {
460 int k;
461 int ngoodrows;
462 int end;
463
464 end = aggrdata->aggrrowsstart[i + 1];
465 ngoodrows = 0;
466 for( k = beg; k < end; ++k )
467 {
468 /* coverity[var_deref_op] */
469 int lppos = SCIProwGetLPPos(aggrdata->aggrrows[k]);
470
471 if( aggrdata->nbadvarsinrow[lppos] == 1 &&
472 SCIPisEQ(scip, SCIProwGetLhs(aggrdata->aggrrows[k]), SCIProwGetRhs(aggrdata->aggrrows[k])) )
473 {
474 int nextgoodrowpos = beg + ngoodrows;
475 if( k > nextgoodrowpos )
476 {
477 SCIPswapPointers((void**) (&aggrdata->aggrrows[k]), (void**) (&aggrdata->aggrrows[nextgoodrowpos]));
478 SCIPswapReals(&aggrdata->aggrrowscoef[k], &aggrdata->aggrrowscoef[nextgoodrowpos]);
479 }
480 ++ngoodrows;
481 }
482 }
483 if( ngoodrows > 0 )
484 {
485 aggrdata->bounddist[i] = -aggrdata->bounddist[i];
486 }
487 aggrdata->ngoodaggrrows[i] = ngoodrows;
488 beg = end;
489 }
490 }
491
492 return SCIP_OKAY;
493}
494
495/** free resources held in aggregation data */
496static
498 SCIP* scip, /**< SCIP datastructure */
499 AGGREGATIONDATA* aggrdata /**< pointer to ggregation data */
500 )
501{
502 SCIPaggrRowFree(scip, &aggrdata->aggrrow);
510}
511
512/** retrieves the candidate rows for canceling out the given variable, also returns the number of "good" rows which are the
513 * rows stored at the first ngoodrows positions. A row is good if its continuous variables are all at their bounds, except
514 * maybe the given continuous variable (in probvaridx)
515 */
516static
518 AGGREGATIONDATA* aggrdata, /**< pointer to ggregation data */
519 int probvaridx, /**< problem index of variables to retrieve candidates for */
520 SCIP_ROW*** rows, /**< pointer to store array to candidate rows */
521 SCIP_Real** rowvarcoefs, /**< pointer to store array of coefficients of given variable in the corresponding rows */
522 int* nrows, /**< pointer to return number of rows in returned arrays */
523 int* ngoodrows /**< pointer to return number of "good" rows in the returned arrays */
524 )
525{
526 int aggrdataidx;
527
528 if( !SCIPsortedvecFindInt(aggrdata->bounddistinds, probvaridx, aggrdata->nbounddistvars, &aggrdataidx) )
529 return FALSE;
530
531 *rows = aggrdata->aggrrows + aggrdata->aggrrowsstart[aggrdataidx];
532 *nrows = aggrdata->aggrrowsstart[aggrdataidx + 1] - aggrdata->aggrrowsstart[aggrdataidx];
533 *rowvarcoefs = aggrdata->aggrrowscoef + aggrdata->aggrrowsstart[aggrdataidx];
534 *ngoodrows = aggrdata->ngoodaggrrows[aggrdataidx];
535
536 return TRUE;
537}
538
539/** find the bound distance value in the aggregation data struct for the given variable problem index */
540static
542 AGGREGATIONDATA* aggrdata, /**< SCIP datastructure */
543 int probvaridx /**< problem index of variables to retrieve candidates for */
544 )
545{
546 int aggrdataidx;
547
548 if( !SCIPsortedvecFindInt(aggrdata->bounddistinds, probvaridx, aggrdata->nbounddistvars, &aggrdataidx) )
549 return 0.0;
550
551 return aggrdata->bounddist[aggrdataidx];
552}
553
554/** Aggregates the next row suitable for cancelling out an active continuous variable.
555 *
556 * Equality rows that contain no other active continuous variables are preffered and apart from that
557 * the scores for the rows are used to determine which row is aggregated next
558 */
559static
561 SCIP* scip, /**< SCIP data structure */
562 SCIP_SEPADATA* sepadata, /**< separator data */
563 SCIP_Real* rowlhsscores, /**< aggregation scores for left hand sides of row */
564 SCIP_Real* rowrhsscores, /**< aggregation scores for right hand sides of row */
565 AGGREGATIONDATA* aggrdata, /**< aggregation data */
566 SCIP_AGGRROW* aggrrow, /**< current aggregation row */
567 int* naggrs, /**< pointer to increase counter if real aggregation took place */
568 SCIP_Bool* success /**< pointer to return whether another row was added to the aggregation row */
569 )
570{
571 int i;
572 int firstcontvar;
573 int* badvarinds;
574 SCIP_Real* badvarbddist;
575 int nbadvars;
576 SCIP_Real minbddist;
577 SCIP_ROW* bestrow;
578 SCIP_Real bestrowscore;
579 SCIP_Real aggrfac;
580 int bestrowside;
581 int ncontvars;
582 int nnz = SCIPaggrRowGetNNz(aggrrow);
583 int* inds = SCIPaggrRowGetInds(aggrrow);
584
585 assert( success != NULL );
586 *success = FALSE;
587
588 firstcontvar = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
590 assert( firstcontvar + ncontvars == SCIPgetNVars(scip) );
591
592 SCIP_CALL( SCIPallocBufferArray(scip, &badvarinds, MIN(ncontvars, nnz)) );
593 SCIP_CALL( SCIPallocBufferArray(scip, &badvarbddist, MIN(ncontvars, nnz)) );
594
595 nbadvars = 0;
596
597 for( i = 0; i < nnz; ++i )
598 {
599 SCIP_Real bounddist;
600
601 /* only consider continuous variables */
602 if( inds[i] < firstcontvar )
603 continue;
604
605 bounddist = aggrdataGetBoundDist(aggrdata, inds[i]);
606
607 if( bounddist == 0.0 )
608 continue;
609
610 badvarinds[nbadvars] = inds[i];
611 badvarbddist[nbadvars] = bounddist;
612 ++nbadvars;
613 }
614
615 if( nbadvars == 0 )
616 goto TERMINATE;
617
618 SCIPsortDownRealInt(badvarbddist, badvarinds, nbadvars);
619
620 aggrfac = 0.0;
621 bestrowscore = 0.0;
622 bestrowside = 0;
623 minbddist = 0.0;
624 bestrow = NULL;
625
626 /* because the "good" bad variables have a negative bound distance, they are at the end */
627 for( i = nbadvars - 1; i >= 0; --i )
628 {
629 int probvaridx;
630 SCIP_ROW** candrows;
631 SCIP_Real* candrowcoefs;
632 int nrows;
633 int ngoodrows;
634 int k;
635
636 /* if the bound distance is not negative, there are no more good variables so stop */
637 if( badvarbddist[i] > 0.0 )
638 break;
639
640 /* if no best row was found yet, this variable has the currently best bound distance */
641 if( aggrfac == 0.0 )
642 minbddist = -badvarbddist[i] * (1.0 - sepadata->aggrtol);
643
644 /* if the bound distance of the current variable is smaller than the minimum bound distance stop looping */
645 if( -badvarbddist[i] < minbddist )
646 break;
647
648 probvaridx = badvarinds[i];
649
650 if( !getRowAggregationCandidates(aggrdata, probvaridx, &candrows, &candrowcoefs, &nrows, &ngoodrows) )
651 return SCIP_ERROR;
652
653 assert(ngoodrows > 0); /* bounddistance was negative for this variable, so it should have good rows */
654 assert(ngoodrows <= nrows);
655
656 for( k = 0; k < ngoodrows; ++k )
657 {
658 SCIP_Real rowaggrfac;
659 SCIP_Real rowscore;
660 int lppos;
661
662 /* do not add rows twice */
663 if( SCIPaggrRowHasRowBeenAdded(aggrrow, candrows[k]) )
664 continue;
665
666 rowaggrfac = - SCIPaggrRowGetProbvarValue(aggrrow, probvaridx) / candrowcoefs[k];
667
668 /* if factor is too extreme skip this row */
669 if( SCIPisFeasZero(scip, rowaggrfac) || REALABS(rowaggrfac) > sepadata->maxrowfac )
670 continue;
671
672 lppos = SCIProwGetLPPos(candrows[k]);
673
674 /* row could be used and good rows are equalities, so ignore sidetype */
675 rowscore = MAX(rowlhsscores[lppos], rowrhsscores[lppos]);
676
677 /* if this rows score is better than the currently best score, remember it */
678 if( aggrfac == 0.0 || rowscore > bestrowscore )
679 {
680 bestrow = candrows[k];
681 aggrfac = rowaggrfac;
682 bestrowscore = rowscore;
683 bestrowside = 0;
684 }
685 }
686 }
687
688 /* found a row among the good rows, so aggregate it and stop */
689 if( aggrfac != 0.0 )
690 {
691 ++(*naggrs);
692 SCIP_CALL( SCIPaggrRowAddRow(scip, aggrrow, bestrow, aggrfac, bestrowside) );
693 SCIPaggrRowRemoveZeros(scip, aggrrow, FALSE, success);
694 goto TERMINATE;
695 }
696
697 for( i = 0; i < nbadvars; ++i )
698 {
699 int probvaridx;
700 SCIP_ROW** candrows;
701 SCIP_Real* candrowcoefs;
702 int nrows;
703 int ngoodrows;
704 int k;
705
706 /* if the bound distance is negative, there are no more variables to be tested, so stop */
707 if( badvarbddist[i] < 0.0 )
708 break;
709
710 /* if no best row was found yet, this variable has the currently best bound distance */
711 if( aggrfac == 0.0 )
712 minbddist = badvarbddist[i] * (1.0 - sepadata->aggrtol);
713
714 /* if the bound distance of the current variable is smaller than the minimum bound distance stop looping */
715 if( badvarbddist[i] < minbddist )
716 break;
717
718 probvaridx = badvarinds[i];
719
720 if( !getRowAggregationCandidates(aggrdata, probvaridx, &candrows, &candrowcoefs, &nrows, &ngoodrows) )
721 return SCIP_ERROR;
722
723 /* bounddistance was positive for this variable, so it should not have good rows */
724 assert(ngoodrows == 0);
725
726 for( k = 0; k < nrows; ++k )
727 {
728 SCIP_Real rowaggrfac;
729 SCIP_Real rowscore;
730 int rowside;
731 int lppos;
732
733 /* do not add rows twice */
734 if( SCIPaggrRowHasRowBeenAdded(aggrrow, candrows[k]) )
735 continue;
736
737 rowaggrfac = - SCIPaggrRowGetProbvarValue(aggrrow, probvaridx) / candrowcoefs[k];
738
739 /* if factor is too extreme skip this row */
740 if( SCIPisFeasZero(scip, rowaggrfac) || REALABS(rowaggrfac) > sepadata->maxrowfac )
741 continue;
742
743 /* row could be used, decide which side */
744 lppos = SCIProwGetLPPos(candrows[k]);
745
746 /* either both or none of the rowscores are 0.0 so use the one which gives a positive slack */
747 if( (rowaggrfac < 0.0 && !SCIPisInfinity(scip, -SCIProwGetLhs(candrows[k]))) || SCIPisInfinity(scip, SCIProwGetRhs(candrows[k])) )
748 {
749 rowscore = rowlhsscores[lppos];
750 rowside = -1;
751 }
752 else
753 {
754 rowscore = rowrhsscores[lppos];
755 rowside = 1;
756 }
757
758 /* if this rows score is better than the currently best score, remember it */
759 if( aggrfac == 0.0 || SCIPisGT(scip, rowscore, bestrowscore) ||
760 (SCIPisEQ(scip, rowscore, bestrowscore) && aggrdata->nbadvarsinrow[lppos] < aggrdata->nbadvarsinrow[SCIProwGetLPPos(bestrow)]) )
761 {
762 bestrow = candrows[k];
763 aggrfac = rowaggrfac;
764 bestrowscore = rowscore;
765 bestrowside = rowside;
766 }
767 }
768 }
769
770 /* found a row so aggregate it */
771 if( aggrfac != 0.0 )
772 {
773 ++(*naggrs);
774 SCIP_CALL( SCIPaggrRowAddRow(scip, aggrrow, bestrow, aggrfac, bestrowside) );
775 SCIPaggrRowRemoveZeros(scip, aggrrow, FALSE, success);
776 }
777
778TERMINATE:
779 SCIPfreeBufferArray(scip, &badvarbddist);
780 SCIPfreeBufferArray(scip, &badvarinds);
781
782 return SCIP_OKAY;
783}
784
785/** aggregates different single mixed integer constraints by taking linear combinations of the rows of the LP */
786static
788 SCIP* scip, /**< SCIP data structure */
789 AGGREGATIONDATA* aggrdata, /**< pointer to aggregation data */
790 SCIP_SEPA* sepa, /**< separator */
791 SCIP_SOL* sol, /**< the solution that should be separated, or NULL for LP solution */
792 SCIP_Bool allowlocal, /**< should local cuts be allowed */
793 SCIP_Real* rowlhsscores, /**< aggregation scores for left hand sides of row */
794 SCIP_Real* rowrhsscores, /**< aggregation scores for right hand sides of row */
795 int startrow, /**< index of row to start aggregation; -1 for using the objective cutoff constraint */
796 int maxaggrs, /**< maximal number of aggregations */
797 SCIP_Bool* wastried, /**< pointer to store whether the given startrow was actually tried */
798 SCIP_Bool* cutoff, /**< whether a cutoff has been detected */
799 int* cutinds, /**< buffer array to store temporarily cut */
800 SCIP_Real* cutcoefs, /**< buffer array to store temporarily cut */
801 SCIP_Bool negate, /**< should the start row be multiplied by -1 */
802 int* ncuts /**< pointer to count the number of generated cuts */
803 )
804{
805 SCIP_SEPADATA* sepadata;
806 SCIP_ROW** rows;
807
808 SCIP_Real startweight;
809 SCIP_Real startrowact;
810 int maxaggrnonzs;
811 int naggrs;
812 int nrows;
813 int maxtestdelta;
814
815 assert(scip != NULL);
816 assert(aggrdata != NULL);
817 assert(aggrdata->aggrrow != NULL);
818 assert(sepa != NULL);
819 assert(rowlhsscores != NULL);
820 assert(rowrhsscores != NULL);
821 assert(wastried != NULL);
822 assert(cutoff != NULL);
823 assert(ncuts != NULL);
824
825 sepadata = SCIPsepaGetData(sepa);
826 assert(sepadata != NULL);
827
828 *cutoff = FALSE;
829 *wastried = FALSE;
830
831 SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
832 assert(nrows == 0 || rows != NULL);
833
834 maxtestdelta = sepadata->maxtestdelta == -1 ? INT_MAX : sepadata->maxtestdelta;
835
836 /* calculate maximal number of non-zeros in aggregated row */
837 maxaggrnonzs = (int)(sepadata->maxaggdensity * SCIPgetNLPCols(scip)) + sepadata->densityoffset;
838
839 /* add start row to the initially empty aggregation row (aggrrow) */
840 if( startrow < 0 )
841 {
843
844 /* if the objective is integral we round the right hand side of the cutoff constraint.
845 * Therefore the constraint may not be valid for the problem but it is valid for the set
846 * of all improving solutions. We refrain from adding an epsilon cutoff for the case
847 * of a non-integral objective function to avoid cutting of any improving solution even
848 * if the improvement is below some epsilon value.
849 */
851 rhs = floor(rhs);
852
853 SCIP_CALL( SCIPaggrRowAddObjectiveFunction(scip, aggrdata->aggrrow, rhs, 1.0) );
854
855 if( SCIPaggrRowGetNNz(aggrdata->aggrrow) == 0 )
856 {
857 SCIPaggrRowClear(aggrdata->aggrrow);
858 return SCIP_OKAY;
859 }
860 }
861 else
862 {
863 assert(0 <= startrow && startrow < nrows);
864
865 SCIPdebugMsg(scip, "start c-MIR aggregation with row <%s> (%d/%d)\n", SCIProwGetName(rows[startrow]), startrow, nrows);
866
867 startrowact = SCIPgetRowSolActivity(scip, rows[startrow], sol);
868
869 if( startrowact <= 0.5 * SCIProwGetLhs(rows[startrow]) + 0.5 * SCIProwGetRhs(rows[startrow]) )
870 startweight = -1.0;
871 else
872 startweight = 1.0;
873
874 SCIP_CALL( SCIPaggrRowAddRow(scip, aggrdata->aggrrow, rows[startrow], negate ? -startweight : startweight, 0) ); /*lint !e644*/
875 }
876
877 /* try to generate cut from the current aggregated row; add cut if found, otherwise add another row to aggrrow
878 * in order to get rid of a continuous variable
879 */
880 naggrs = 0;
881 while( naggrs <= maxaggrs )
882 {
883 int cutrank = 0;
884 int cutnnz = 0;
885 SCIP_Bool aggrsuccess;
886 SCIP_Bool cmirsuccess;
887 SCIP_Bool cmircutislocal = FALSE;
888 SCIP_Bool flowcoversuccess;
889 SCIP_Real flowcoverefficacy;
890 SCIP_Bool flowcovercutislocal = FALSE;
891 SCIP_Bool knapsackcoversuccess;
892 SCIP_Real knapsackcoverefficacy;
893 SCIP_Bool knapsackcovercutislocal = FALSE;
894 SCIP_ROW* cut = NULL;
895 SCIP_Real cutrhs = SCIP_INVALID;
896 SCIP_Real cutefficacy;
897
898 *wastried = TRUE;
899
900 /* Step 1:
901 * try to generate a MIR cut out of the current aggregated row
902 */
903
904 flowcoverefficacy = -SCIPinfinity(scip);
905
906 if( sepadata->sepflowcover )
907 {
908 SCIP_CALL( SCIPcalcFlowCover(scip, sol, POSTPROCESS, BOUNDSWITCH, allowlocal, aggrdata->aggrrow, /*lint !e644*/
909 cutcoefs, &cutrhs, cutinds, &cutnnz, &flowcoverefficacy, &cutrank, &flowcovercutislocal, &flowcoversuccess) );
910 }
911 else
912 {
913 flowcoversuccess = FALSE;
914 }
915
916 /* initialize the knapsack cover cut efficacy variable with the flowcover efficacy so that
917 * only knapsack cover cuts better than that efficacy are returned.
918 */
919 knapsackcoverefficacy = flowcoverefficacy;
920
921 if( sepadata->sepknapsackcover )
922 {
923 SCIP_CALL( SCIPcalcKnapsackCover(scip, sol, allowlocal, aggrdata->aggrrow, /*lint !e644*/
924 cutcoefs, &cutrhs, cutinds, &cutnnz, &knapsackcoverefficacy, &cutrank, &knapsackcovercutislocal, &knapsackcoversuccess) );
925 }
926 else
927 {
928 knapsackcoversuccess = FALSE;
929 }
930
931 /* initialize the cutefficacy variable with the knapsackcoverefficacy, so that only CMIR cuts
932 * that have a higher efficacy than that of a flowcover or knapsack cover cut possibly
933 * found in the call above are returned since the previous cut is overwritten in that case.
934 */
935 cutefficacy = knapsackcoverefficacy;
936
937 if( sepadata->sepcmir )
938 {
940 aggrdata->aggrrow, cutcoefs, &cutrhs, cutinds, &cutnnz, &cutefficacy, &cutrank, &cmircutislocal, &cmirsuccess) );
941 }
942 else
943 {
944 cmirsuccess = FALSE;
945 }
946
947 if( cmirsuccess )
948 {
949 /* cppcheck-suppress uninitvar */
950 SCIP_CALL( addCut(scip, sol, sepadata->cmir, FALSE, cutcoefs, cutinds, cutnnz, cutrhs, cutefficacy,
951 cmircutislocal, sepadata->dynamiccuts, cutrank, startrow < 0 ? "objcmir" : "cmir", cutoff, ncuts, &cut) ); /*lint !e644*/
952 }
953 else if ( knapsackcoversuccess )
954 {
955 /* cppcheck-suppress uninitvar */
956 SCIP_CALL( addCut(scip, sol, sepadata->knapsackcover, FALSE, cutcoefs, cutinds, cutnnz, cutrhs, cutefficacy,
957 knapsackcovercutislocal, sepadata->dynamiccuts, cutrank, startrow < 0 ? "objlci" : "lci", cutoff, ncuts, &cut) ); /*lint !e644*/
958 }
959 else if ( flowcoversuccess )
960 {
961 /* cppcheck-suppress uninitvar */
962 SCIP_CALL( addCut(scip, sol, sepadata->flowcover, FALSE, cutcoefs, cutinds, cutnnz, cutrhs, cutefficacy,
963 flowcovercutislocal, sepadata->dynamiccuts, cutrank, startrow < 0 ? "objflowcover" : "flowcover", cutoff, ncuts, &cut) ); /*lint !e644*/
964 }
965
966 if ( *cutoff )
967 {
968 if( cut != NULL )
969 {
970 SCIP_CALL( SCIPreleaseRow(scip, &cut) );
971 }
972 break;
973 }
974
975 /* if the cut was successfully added, decrease the score of the rows used in the aggregation and clean the aggregation
976 * row (and call this function again with a different start row for aggregation)
977 */
978 if( cut != NULL )
979 {
980 int* rowinds;
981 int i;
982
983 rowinds = SCIPaggrRowGetRowInds(aggrdata->aggrrow);
984 nrows = SCIPaggrRowGetNRows(aggrdata->aggrrow);
985
986 /* decrease row score of used rows slightly */
987 for( i = 0; i < nrows; ++i )
988 {
989 SCIP_Real fac = 1.0 - 0.999 * SCIProwGetParallelism(rows[rowinds[i]], cut, 'e');
990
991 rowlhsscores[rowinds[i]] *= fac;
992 rowrhsscores[rowinds[i]] *= fac;
993 }
994
995 SCIP_CALL( SCIPreleaseRow(scip, &cut) );
996
997 SCIPdebugMsg(scip, " -> abort aggregation: cut found\n");
998 break;
999 }
1000
1001 /* Step 2:
1002 * aggregate an additional row in order to remove a continuous variable
1003 */
1004
1005 /* abort, if we reached the maximal number of aggregations */
1006 if( naggrs == maxaggrs )
1007 {
1008 SCIPdebugMsg(scip, " -> abort aggregation: maximal number of aggregations reached\n");
1009 break;
1010 }
1011
1012 SCIP_CALL( aggregateNextRow(scip, sepadata, rowlhsscores, rowrhsscores, aggrdata, aggrdata->aggrrow,
1013 &naggrs, &aggrsuccess) );
1014
1015 /* no suitable aggregation was found or number of non-zeros is now too large so abort */
1016 if( ! aggrsuccess || SCIPaggrRowGetNNz(aggrdata->aggrrow) > maxaggrnonzs || SCIPaggrRowGetNNz(aggrdata->aggrrow) == 0 )
1017 {
1018 break;
1019 }
1020
1021 SCIPdebugMsg(scip, " -> current aggregation has %d/%d nonzeros and consists of %d/%d rows\n",
1022 SCIPaggrRowGetNNz(aggrdata->aggrrow), maxaggrnonzs, naggrs, maxaggrs);
1023 }
1024
1025 SCIPaggrRowClear(aggrdata->aggrrow);
1026
1027 return SCIP_OKAY;
1028}
1029
1030/** gives an estimate of how much the activity of this row is affected by fractionality in the current solution */
1031static
1033 SCIP_ROW* row, /**< the LP row */
1034 SCIP_Real* fractionalities /**< array of fractionalities for each variable */
1035 )
1036{
1037 int nlpnonz;
1038 int i;
1039 SCIP_COL** cols;
1040 SCIP_Real* vals;
1041 SCIP_Real fracsum = 0.0;
1042
1043 cols = SCIProwGetCols(row);
1044 vals = SCIProwGetVals(row);
1045 nlpnonz = SCIProwGetNLPNonz(row);
1046
1047 for( i = 0; i < nlpnonz; ++i )
1048 {
1049 SCIP_VAR* var = SCIPcolGetVar(cols[i]);
1050 fracsum += REALABS(vals[i] * fractionalities[SCIPvarGetProbindex(var)]);
1051 }
1052
1053 return fracsum;
1054}
1055
1056/** searches for and adds c-MIR cuts that separate the given primal solution */
1057static
1059 SCIP* scip, /**< SCIP data structure */
1060 SCIP_SEPA* sepa, /**< the c-MIR separator */
1061 SCIP_SOL* sol, /**< the solution that should be separated, or NULL for LP solution */
1062 SCIP_Bool allowlocal, /**< should local cuts be allowed */
1063 int depth, /**< current depth */
1064 SCIP_RESULT* result /**< pointer to store the result */
1065 )
1066{
1067 AGGREGATIONDATA aggrdata;
1068 SCIP_SEPADATA* sepadata;
1069 SCIP_VAR** vars;
1070 SCIP_Real* varsolvals;
1071 SCIP_Real* bestcontlbs;
1072 SCIP_Real* bestcontubs;
1073 SCIP_Real* fractionalities;
1074 SCIP_ROW** rows;
1075 SCIP_Real* rowlhsscores;
1076 SCIP_Real* rowrhsscores;
1077 SCIP_Real* rowscores;
1078 int* roworder;
1079 SCIP_Real maxslack;
1080 SCIP_Bool cutoff = FALSE;
1081 SCIP_Bool wastried;
1082 int nvars;
1083 int nintvars;
1084 int ncontvars;
1085 int nrows;
1086 int nnonzrows;
1087 int ntries;
1088 int nfails;
1089 int ncalls;
1090 int maxtries;
1091 int maxfails;
1092 int maxaggrs;
1093 int maxsepacuts;
1094 int ncuts;
1095 int r;
1096 int v;
1097 int oldncuts;
1098
1099 int* cutinds;
1100 SCIP_Real* cutcoefs;
1101
1102 assert(result != NULL);
1103 assert(*result == SCIP_DIDNOTRUN);
1104
1105 sepadata = SCIPsepaGetData(sepa);
1106 assert(sepadata != NULL);
1107
1108 ncalls = SCIPsepaGetNCallsAtNode(sepa);
1109
1110 /* only call the cmir cut separator a given number of times at each node */
1111 if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
1112 || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
1113 return SCIP_OKAY;
1114
1115 /* check which cuts should be separated */
1116 {
1117 int cmirfreq;
1118 int flowcoverfreq;
1119 int knapsackcoverfreq;
1120
1121 cmirfreq = SCIPsepaGetFreq(sepadata->cmir);
1122 flowcoverfreq = SCIPsepaGetFreq(sepadata->flowcover);
1123 knapsackcoverfreq = SCIPsepaGetFreq(sepadata->knapsackcover);
1124
1125 sepadata->sepcmir = cmirfreq > 0 ? (depth % cmirfreq) == 0 : cmirfreq == depth;
1126 sepadata->sepflowcover = flowcoverfreq > 0 ? (depth % flowcoverfreq) == 0 : flowcoverfreq == depth;
1127 sepadata->sepknapsackcover = knapsackcoverfreq > 0 ? (depth % knapsackcoverfreq) == 0 : knapsackcoverfreq == depth;
1128 }
1129
1130 if( ! sepadata->sepcmir && ! sepadata->sepflowcover && ! sepadata->sepknapsackcover )
1131 return SCIP_OKAY;
1132
1133 /* get all rows and number of columns */
1134 SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
1135 assert(nrows == 0 || rows != NULL);
1136
1137 /* nothing to do, if LP is empty */
1138 if( nrows == 0 )
1139 return SCIP_OKAY;
1140
1141 /* check whether SCIP was stopped in the meantime */
1142 if( SCIPisStopped(scip) )
1143 return SCIP_OKAY;
1144
1145 /* get active problem variables */
1146 vars = SCIPgetVars(scip);
1147 nvars = SCIPgetNVars(scip);
1148 ncontvars = SCIPgetNContVars(scip);
1149#ifdef IMPLINTSARECONT
1150 ncontvars += SCIPgetNImplVars(scip); /* also aggregate out implicit integers */
1151#endif
1152 nintvars = nvars - ncontvars;
1153 assert(nvars == 0 || vars != NULL);
1154
1155 /* nothing to do, if problem has no variables */
1156 if( nvars == 0 )
1157 return SCIP_OKAY;
1158
1159 SCIPdebugMsg(scip, "separating c-MIR cuts\n");
1160
1161 *result = SCIP_DIDNOTFIND;
1162
1163 /* get data structure */
1164 SCIP_CALL( SCIPallocBufferArray(scip, &rowlhsscores, nrows) );
1165 SCIP_CALL( SCIPallocBufferArray(scip, &rowrhsscores, nrows) );
1166 SCIP_CALL( SCIPallocBufferArray(scip, &roworder, nrows) );
1167 SCIP_CALL( SCIPallocBufferArray(scip, &varsolvals, nvars) );
1168 SCIP_CALL( SCIPallocBufferArray(scip, &bestcontlbs, ncontvars) );
1169 SCIP_CALL( SCIPallocBufferArray(scip, &bestcontubs, ncontvars) );
1170 SCIP_CALL( SCIPallocBufferArray(scip, &fractionalities, nvars) );
1171 SCIP_CALL( SCIPallocBufferArray(scip, &cutinds, nvars) );
1172 SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
1173 SCIP_CALL( SCIPallocBufferArray(scip, &rowscores, nrows) );
1174
1175 /* get the solution values for all active variables */
1176 SCIP_CALL( SCIPgetSolVals(scip, sol, nvars, vars, varsolvals) );
1177
1178 /* calculate the fractionality of the integer variables in the current solution */
1179 for( v = 0; v < nintvars; ++v )
1180 {
1181 fractionalities[v] = SCIPfeasFrac(scip, varsolvals[v]);
1182 fractionalities[v] = MIN(fractionalities[v], 1.0 - fractionalities[v]);
1183 }
1184
1185 /* calculate the fractionality of the continuous variables in the current solution;
1186 * The fractionality of a continuous variable x is defined to be a * f_y,
1187 * if there is a variable bound x <= a * y + c where f_y is the fractionality of y
1188 * and in the current solution the variable bound has no slack.
1189 */
1190 for( ; v < nvars; ++v )
1191 {
1192 SCIP_VAR** vlbvars;
1193 SCIP_VAR** vubvars;
1194 SCIP_Real* vlbcoefs;
1195 SCIP_Real* vubcoefs;
1196 SCIP_Real closestvlb;
1197 SCIP_Real closestvub;
1198 int closestvlbidx;
1199 int closestvubidx;
1200
1201 SCIP_CALL( SCIPgetVarClosestVlb(scip, vars[v], sol, &closestvlb, &closestvlbidx) );
1202 SCIP_CALL( SCIPgetVarClosestVub(scip, vars[v], sol, &closestvub, &closestvubidx) );
1203
1204 vlbvars = SCIPvarGetVlbVars(vars[v]);
1205 vubvars = SCIPvarGetVubVars(vars[v]);
1206 vlbcoefs = SCIPvarGetVlbCoefs(vars[v]);
1207 vubcoefs = SCIPvarGetVubCoefs(vars[v]);
1208
1209 fractionalities[v] = 0.0;
1210 if( closestvlbidx != -1 && SCIPisEQ(scip, varsolvals[v], closestvlb) )
1211 {
1212 int vlbvarprobidx = SCIPvarGetProbindex(vlbvars[closestvlbidx]);
1213 SCIP_Real frac = SCIPfeasFrac(scip, varsolvals[vlbvarprobidx]);
1214
1215 if( frac < 0.0 )
1216 frac = 0.0;
1217 assert(frac >= 0.0 && frac < 1.0);
1218 frac = MIN(frac, 1.0 - frac) * vlbcoefs[closestvlbidx];
1219 fractionalities[v] += frac;
1220 }
1221
1222 if( closestvubidx != -1 && SCIPisEQ(scip, varsolvals[v], closestvub) )
1223 {
1224 int vubvarprobidx = SCIPvarGetProbindex(vubvars[closestvubidx]);
1225 SCIP_Real frac = SCIPfeasFrac(scip, varsolvals[vubvarprobidx]);
1226
1227 if( frac < 0.0 )
1228 frac = 0.0;
1229 assert(frac >= 0.0 && frac < 1.0);
1230 frac = MIN(frac, 1.0 - frac) * vubcoefs[closestvubidx];
1231 fractionalities[v] += frac;
1232 }
1233 }
1234
1235 /* get the maximal number of cuts allowed in a separation round */
1236 if( depth == 0 )
1237 {
1238 maxtries = sepadata->maxtriesroot;
1239 maxfails = sepadata->maxfailsroot;
1240 maxaggrs = sepadata->maxaggrsroot;
1241 maxsepacuts = sepadata->maxsepacutsroot;
1242 maxslack = sepadata->maxslackroot;
1243 }
1244 else
1245 {
1246 maxtries = sepadata->maxtries;
1247 maxfails = sepadata->maxfails;
1248 maxaggrs = sepadata->maxaggrs;
1249 maxsepacuts = sepadata->maxsepacuts;
1250 maxslack = sepadata->maxslack;
1251 }
1252
1253 /* calculate aggregation scores for both sides of all rows, and sort rows by decreasing maximal score
1254 * TODO: document score definition */
1255
1256 /* count the number of non-zero rows and zero rows. these values are used for the sorting of the rowscores.
1257 * only the non-zero rows need to be sorted. */
1258 nnonzrows = 0;
1259 for( r = 0; r < nrows; r++ )
1260 {
1261 int nnonz;
1262
1263 assert(SCIProwGetLPPos(rows[r]) == r);
1264
1265 nnonz = SCIProwGetNLPNonz(rows[r]);
1266 if( nnonz == 0 || SCIProwIsModifiable(rows[r]) || (!allowlocal && SCIProwIsLocal(rows[r])) )
1267 {
1268 /* ignore empty rows, modifiable rows, and local rows if they are not allowed */
1269 rowlhsscores[r] = 0.0;
1270 rowrhsscores[r] = 0.0;
1271 }
1272 else
1273 {
1274 SCIP_Real activity;
1275 SCIP_Real lhs;
1276 SCIP_Real rhs;
1277 SCIP_Real dualsol;
1278 SCIP_Real dualscore;
1279 SCIP_Real rowdensity;
1280 SCIP_Real rownorm;
1281 SCIP_Real slack;
1282 SCIP_Real fracact;
1283 SCIP_Real fracscore;
1284 SCIP_Real objnorm;
1285
1286 objnorm = SCIPgetObjNorm(scip);
1287 objnorm = MAX(objnorm, 1.0);
1288
1289 fracact = getRowFracActivity(rows[r], fractionalities);
1290 dualsol = (sol == NULL ? SCIProwGetDualsol(rows[r]) : 1.0);
1291 activity = SCIPgetRowSolActivity(scip, rows[r], sol);
1292 lhs = SCIProwGetLhs(rows[r]);
1293 rhs = SCIProwGetRhs(rows[r]);
1294 rownorm = SCIProwGetNorm(rows[r]);
1295 rownorm = MAX(rownorm, 0.1);
1296 rowdensity = (SCIP_Real)(nnonz - sepadata->densityoffset)/(SCIP_Real)nvars;
1297 assert(SCIPisPositive(scip, rownorm));
1298 fracscore = fracact / rownorm;
1299
1300 slack = (activity - lhs)/rownorm;
1301 dualscore = MAX(fracscore * dualsol/objnorm, 0.0001);
1302 if( !SCIPisInfinity(scip, -lhs) && SCIPisLE(scip, slack, maxslack)
1303 && rowdensity <= sepadata->maxrowdensity
1304 && rowdensity <= sepadata->maxaggdensity ) /*lint !e774*/
1305 {
1306 rowlhsscores[r] = dualscore + sepadata->densityscore * (1.0-rowdensity) + sepadata->slackscore * MAX(1.0 - slack, 0.0);
1307 assert(rowlhsscores[r] > 0.0);
1308 }
1309 else
1310 rowlhsscores[r] = 0.0;
1311
1312 slack = (rhs - activity)/rownorm;
1313 dualscore = MAX(-fracscore * dualsol/objnorm, 0.0001);
1314 if( !SCIPisInfinity(scip, rhs) && SCIPisLE(scip, slack, maxslack)
1315 && rowdensity <= sepadata->maxrowdensity
1316 && rowdensity <= sepadata->maxaggdensity ) /*lint !e774*/
1317 {
1318 rowrhsscores[r] = dualscore + sepadata->densityscore * (1.0-rowdensity) + sepadata->slackscore * MAX(1.0 - slack, 0.0);
1319 assert(rowrhsscores[r] > 0.0);
1320 }
1321 else
1322 rowrhsscores[r] = 0.0;
1323
1324 /* for the row order only use the fractionality score since it best indicates how likely it is to find a cut */
1325 if( fracscore != 0.0 )
1326 {
1327 roworder[nnonzrows] = r;
1328 rowscores[nnonzrows] = fracscore;
1329 ++nnonzrows;
1330 }
1331 }
1332
1333 SCIPdebugMsg(scip, " -> row %d <%s>: lhsscore=%g rhsscore=%g maxscore=%g\n", r, SCIProwGetName(rows[r]),
1334 rowlhsscores[r], rowrhsscores[r], rowscores[r]);
1335 }
1336 assert(nnonzrows <= nrows);
1337
1338 SCIPsortDownRealInt(rowscores, roworder, nnonzrows);
1339 SCIPfreeBufferArray(scip, &rowscores);
1340
1341 /* calculate the data required for performing the row aggregation */
1342 SCIP_CALL( setupAggregationData(scip, sol, allowlocal, &aggrdata) );
1343
1344 ncuts = 0;
1345 if( maxtries < 0 )
1346 maxtries = INT_MAX;
1347 if( maxfails < 0 )
1348 maxfails = INT_MAX;
1349 else if( depth == 0 && 2 * SCIPgetNSepaRounds(scip) < maxfails )
1350 maxfails += maxfails - 2 * SCIPgetNSepaRounds(scip); /* allow up to double as many fails in early separounds of root node */
1351
1352 /* start aggregation heuristic for each row in the LP and generate resulting cuts */
1353 ntries = 0;
1354 nfails = 0;
1355
1357 {
1358 /* try separating the objective function with the cutoff bound */
1359 SCIP_CALL( aggregation(scip, &aggrdata, sepa, sol, allowlocal, rowlhsscores, rowrhsscores,
1360 -1, 2 * maxaggrs, &wastried, &cutoff, cutinds, cutcoefs, FALSE, &ncuts) );
1361
1362 if( cutoff )
1363 goto TERMINATE;
1364 }
1365
1366 for( r = 0; r < nnonzrows && ntries < maxtries && ncuts < maxsepacuts && !SCIPisStopped(scip); r++ )
1367 {
1368 oldncuts = ncuts;
1369 SCIP_CALL( aggregation(scip, &aggrdata, sepa, sol, allowlocal, rowlhsscores, rowrhsscores,
1370 roworder[r], maxaggrs, &wastried, &cutoff, cutinds, cutcoefs, FALSE, &ncuts) );
1371
1372 /* if trynegscaling is true we start the aggregation heuristic again for this row, but multiply it by -1 first.
1373 * This is done by calling the aggregation function with the parameter negate equal to TRUE
1374 */
1375 if( sepadata->trynegscaling && !cutoff )
1376 {
1377 SCIP_CALL( aggregation(scip, &aggrdata, sepa, sol, allowlocal, rowlhsscores, rowrhsscores,
1378 roworder[r], maxaggrs, &wastried, &cutoff, cutinds, cutcoefs, TRUE, &ncuts) );
1379 }
1380
1381 if ( cutoff )
1382 break;
1383
1384 if( !wastried )
1385 {
1386 continue;
1387 }
1388 ntries++;
1389
1390 if( ncuts == oldncuts )
1391 {
1392 nfails++;
1393 if( nfails >= maxfails )
1394 {
1395 break;
1396 }
1397 }
1398 else
1399 {
1400 nfails = 0;
1401 }
1402 }
1403 TERMINATE:
1404 /* free data structure */
1405 destroyAggregationData(scip, &aggrdata);
1406 SCIPfreeBufferArray(scip, &cutcoefs);
1407 SCIPfreeBufferArray(scip, &cutinds);
1408 SCIPfreeBufferArray(scip, &fractionalities);
1409 SCIPfreeBufferArray(scip, &bestcontubs);
1410 SCIPfreeBufferArray(scip, &bestcontlbs);
1411 SCIPfreeBufferArray(scip, &varsolvals);
1412 SCIPfreeBufferArray(scip, &roworder);
1413 SCIPfreeBufferArray(scip, &rowrhsscores);
1414 SCIPfreeBufferArray(scip, &rowlhsscores);
1415
1416 if ( cutoff )
1417 *result = SCIP_CUTOFF;
1418 else if ( ncuts > 0 )
1419 *result = SCIP_SEPARATED;
1420
1421 return SCIP_OKAY;
1422}
1423
1424/*
1425 * Callback methods of separator
1426 */
1427
1428/** copy method for separator plugins (called when SCIP copies plugins) */
1429static
1430SCIP_DECL_SEPACOPY(sepaCopyAggregation)
1431{ /*lint --e{715}*/
1432 assert(scip != NULL);
1433 assert(sepa != NULL);
1434 assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
1435
1436 /* call inclusion method of constraint handler */
1438
1439 return SCIP_OKAY;
1440}
1441
1442/** destructor of separator to free user data (called when SCIP is exiting) */
1443static
1444SCIP_DECL_SEPAFREE(sepaFreeAggregation)
1445{ /*lint --e{715}*/
1446 SCIP_SEPADATA* sepadata;
1447
1448 /* free separator data */
1449 sepadata = SCIPsepaGetData(sepa);
1450 assert(sepadata != NULL);
1451
1452 SCIPfreeBlockMemory(scip, &sepadata);
1453
1454 SCIPsepaSetData(sepa, NULL);
1455
1456 return SCIP_OKAY;
1457}
1458
1459/** LP solution separation method of separator */
1460static
1461SCIP_DECL_SEPAEXECLP(sepaExeclpAggregation)
1462{ /*lint --e{715}*/
1463 assert( result != NULL );
1464
1465 *result = SCIP_DIDNOTRUN;
1466
1467 /* only call separator, if we are not close to terminating */
1468 if( SCIPisStopped(scip) )
1469 return SCIP_OKAY;
1470
1471 /* only call separator, if an optimal LP solution is at hand */
1473 return SCIP_OKAY;
1474
1475 /* only call separator, if there are fractional variables */
1476 if( SCIPgetNLPBranchCands(scip) == 0 )
1477 return SCIP_OKAY;
1478
1479 SCIP_CALL( separateCuts(scip, sepa, NULL, allowlocal, depth, result) );
1480
1481 return SCIP_OKAY;
1482}
1483
1484/** arbitrary primal solution separation method of separator */
1485static
1486SCIP_DECL_SEPAEXECSOL(sepaExecsolAggregation)
1487{ /*lint --e{715}*/
1488 assert( result != NULL );
1489
1490 *result = SCIP_DIDNOTRUN;
1491
1492 SCIP_CALL( separateCuts(scip, sepa, sol, allowlocal, depth, result) );
1493
1494 return SCIP_OKAY;
1495}
1496
1497/** LP solution separation method of dummy separator */
1498static
1499SCIP_DECL_SEPAEXECLP(sepaExeclpDummy)
1500{ /*lint --e{715}*/
1501 assert( result != NULL );
1502
1503 *result = SCIP_DIDNOTRUN;
1504
1505 return SCIP_OKAY;
1506}
1507
1508/** arbitrary primal solution separation method of dummy separator */
1509static
1510SCIP_DECL_SEPAEXECSOL(sepaExecsolDummy)
1511{ /*lint --e{715}*/
1512 assert( result != NULL );
1513
1514 *result = SCIP_DIDNOTRUN;
1515
1516 return SCIP_OKAY;
1517}
1518
1519/*
1520 * separator specific interface methods
1521 */
1522
1523/** creates the cmir separator and includes it in SCIP */
1525 SCIP* scip /**< SCIP data structure */
1526 )
1527{
1528 SCIP_SEPADATA* sepadata;
1529 SCIP_SEPA* sepa;
1530
1531 /* create cmir separator data */
1532 SCIP_CALL( SCIPallocBlockMemory(scip, &sepadata) );
1533
1534 /* include dummy separators */
1535 SCIP_CALL( SCIPincludeSepaBasic(scip, &sepadata->flowcover, "flowcover", "separator for flowcover cuts", -100000, SEPA_FREQ, 0.0,
1536 SEPA_USESSUBSCIP, FALSE, sepaExeclpDummy, sepaExecsolDummy, NULL) );
1537
1538 assert(sepadata->flowcover != NULL);
1539
1540 SCIP_CALL( SCIPincludeSepaBasic(scip, &sepadata->cmir, "cmir", "separator for cmir cuts", -100000, SEPA_FREQ, 0.0,
1541 SEPA_USESSUBSCIP, FALSE, sepaExeclpDummy, sepaExecsolDummy, NULL) );
1542
1543 assert(sepadata->cmir != NULL);
1544
1545 SCIP_CALL( SCIPincludeSepaBasic(scip, &sepadata->knapsackcover, "knapsackcover", "separator for knapsack cover cuts", -100000, SEPA_FREQ, 0.0,
1546 SEPA_USESSUBSCIP, FALSE, sepaExeclpDummy, sepaExecsolDummy, NULL) );
1547
1548 assert(sepadata->knapsackcover != NULL);
1549
1550 /* include separator */
1553 sepaExeclpAggregation, sepaExecsolAggregation,
1554 sepadata) );
1555
1556 assert(sepa != NULL);
1557
1558 /* set non-NULL pointers to callback methods */
1559 SCIP_CALL( SCIPsetSepaCopy(scip, sepa, sepaCopyAggregation) );
1560 SCIP_CALL( SCIPsetSepaFree(scip, sepa, sepaFreeAggregation) );
1561
1562 /* mark main separator as a parent */
1564
1565 /* set pointer from child separators to main separator */
1566 SCIPsetSepaParentsepa(scip, sepadata->flowcover, sepa);
1567 SCIPsetSepaParentsepa(scip, sepadata->cmir, sepa);
1568 SCIPsetSepaParentsepa(scip, sepadata->knapsackcover, sepa);
1569
1570 /* add cmir separator parameters */
1572 "separating/" SEPA_NAME "/maxrounds",
1573 "maximal number of cmir separation rounds per node (-1: unlimited)",
1574 &sepadata->maxrounds, FALSE, DEFAULT_MAXROUNDS, -1, INT_MAX, NULL, NULL) );
1576 "separating/" SEPA_NAME "/maxroundsroot",
1577 "maximal number of cmir separation rounds in the root node (-1: unlimited)",
1578 &sepadata->maxroundsroot, FALSE, DEFAULT_MAXROUNDSROOT, -1, INT_MAX, NULL, NULL) );
1580 "separating/" SEPA_NAME "/maxtries",
1581 "maximal number of rows to start aggregation with per separation round (-1: unlimited)",
1582 &sepadata->maxtries, TRUE, DEFAULT_MAXTRIES, -1, INT_MAX, NULL, NULL) );
1584 "separating/" SEPA_NAME "/maxtriesroot",
1585 "maximal number of rows to start aggregation with per separation round in the root node (-1: unlimited)",
1586 &sepadata->maxtriesroot, TRUE, DEFAULT_MAXTRIESROOT, -1, INT_MAX, NULL, NULL) );
1588 "separating/" SEPA_NAME "/maxfails",
1589 "maximal number of consecutive unsuccessful aggregation tries (-1: unlimited)",
1590 &sepadata->maxfails, TRUE, DEFAULT_MAXFAILS, -1, INT_MAX, NULL, NULL) );
1592 "separating/" SEPA_NAME "/maxfailsroot",
1593 "maximal number of consecutive unsuccessful aggregation tries in the root node (-1: unlimited)",
1594 &sepadata->maxfailsroot, TRUE, DEFAULT_MAXFAILSROOT, -1, INT_MAX, NULL, NULL) );
1596 "separating/" SEPA_NAME "/maxaggrs",
1597 "maximal number of aggregations for each row per separation round",
1598 &sepadata->maxaggrs, TRUE, DEFAULT_MAXAGGRS, 0, INT_MAX, NULL, NULL) );
1600 "separating/" SEPA_NAME "/maxaggrsroot",
1601 "maximal number of aggregations for each row per separation round in the root node",
1602 &sepadata->maxaggrsroot, TRUE, DEFAULT_MAXAGGRSROOT, 0, INT_MAX, NULL, NULL) );
1604 "separating/" SEPA_NAME "/maxsepacuts",
1605 "maximal number of cmir cuts separated per separation round",
1606 &sepadata->maxsepacuts, FALSE, DEFAULT_MAXSEPACUTS, 0, INT_MAX, NULL, NULL) );
1608 "separating/" SEPA_NAME "/maxsepacutsroot",
1609 "maximal number of cmir cuts separated per separation round in the root node",
1610 &sepadata->maxsepacutsroot, FALSE, DEFAULT_MAXSEPACUTSROOT, 0, INT_MAX, NULL, NULL) );
1612 "separating/" SEPA_NAME "/maxslack",
1613 "maximal slack of rows to be used in aggregation",
1614 &sepadata->maxslack, TRUE, DEFAULT_MAXSLACK, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1616 "separating/" SEPA_NAME "/maxslackroot",
1617 "maximal slack of rows to be used in aggregation in the root node",
1618 &sepadata->maxslackroot, TRUE, DEFAULT_MAXSLACKROOT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1620 "separating/" SEPA_NAME "/densityscore",
1621 "weight of row density in the aggregation scoring of the rows",
1622 &sepadata->densityscore, TRUE, DEFAULT_DENSITYSCORE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1624 "separating/" SEPA_NAME "/slackscore",
1625 "weight of slack in the aggregation scoring of the rows",
1626 &sepadata->slackscore, TRUE, DEFAULT_SLACKSCORE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1628 "separating/" SEPA_NAME "/maxaggdensity",
1629 "maximal density of aggregated row",
1630 &sepadata->maxaggdensity, TRUE, DEFAULT_MAXAGGDENSITY, 0.0, 1.0, NULL, NULL) );
1632 "separating/" SEPA_NAME "/maxrowdensity",
1633 "maximal density of row to be used in aggregation",
1634 &sepadata->maxrowdensity, TRUE, DEFAULT_MAXROWDENSITY, 0.0, 1.0, NULL, NULL) );
1636 "separating/" SEPA_NAME "/densityoffset",
1637 "additional number of variables allowed in row on top of density",
1638 &sepadata->densityoffset, TRUE, DEFAULT_DENSITYOFFSET, 0, INT_MAX, NULL, NULL) );
1640 "separating/" SEPA_NAME "/maxrowfac",
1641 "maximal row aggregation factor",
1642 &sepadata->maxrowfac, TRUE, DEFAULT_MAXROWFAC, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1644 "separating/" SEPA_NAME "/maxtestdelta",
1645 "maximal number of different deltas to try (-1: unlimited)",
1646 &sepadata->maxtestdelta, TRUE, DEFAULT_MAXTESTDELTA, -1, INT_MAX, NULL, NULL) );
1648 "separating/" SEPA_NAME "/aggrtol",
1649 "tolerance for bound distances used to select continuous variable in current aggregated constraint to be eliminated",
1650 &sepadata->aggrtol, TRUE, DEFAULT_AGGRTOL, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1652 "separating/" SEPA_NAME "/trynegscaling",
1653 "should negative values also be tested in scaling?",
1654 &sepadata->trynegscaling, TRUE, DEFAULT_TRYNEGSCALING, NULL, NULL) );
1656 "separating/" SEPA_NAME "/fixintegralrhs",
1657 "should an additional variable be complemented if f0 = 0?",
1658 &sepadata->fixintegralrhs, TRUE, DEFAULT_FIXINTEGRALRHS, NULL, NULL) );
1660 "separating/" SEPA_NAME "/dynamiccuts",
1661 "should generated cuts be removed from the LP if they are no longer tight?",
1662 &sepadata->dynamiccuts, FALSE, DEFAULT_DYNAMICCUTS, NULL, NULL) );
1663
1664 return SCIP_OKAY;
1665}
SCIP_Real * r
Definition: circlepacking.c:59
methods for the aggregation rows
#define NULL
Definition: def.h:266
#define SCIP_MAXSTRLEN
Definition: def.h:287
#define SCIP_REAL_MAX
Definition: def.h:173
#define SCIP_INVALID
Definition: def.h:192
#define SCIP_Bool
Definition: def.h:91
#define MIN(x, y)
Definition: def.h:242
#define SCIP_Real
Definition: def.h:172
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define MAX(x, y)
Definition: def.h:238
#define SCIP_LONGINT_FORMAT
Definition: def.h:164
#define REALABS(x)
Definition: def.h:196
#define SCIP_CALL(x)
Definition: def.h:373
SCIP_Bool SCIPisStopped(SCIP *scip)
Definition: scip_general.c:734
int SCIPgetNIntVars(SCIP *scip)
Definition: scip_prob.c:2082
int SCIPgetNImplVars(SCIP *scip)
Definition: scip_prob.c:2127
int SCIPgetNContVars(SCIP *scip)
Definition: scip_prob.c:2172
SCIP_RETCODE SCIPgetVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars, int *nbinvars, int *nintvars, int *nimplvars, int *ncontvars)
Definition: scip_prob.c:1866
int SCIPgetNVars(SCIP *scip)
Definition: scip_prob.c:1992
SCIP_VAR ** SCIPgetVars(SCIP *scip)
Definition: scip_prob.c:1947
SCIP_Real SCIPgetObjNorm(SCIP *scip)
Definition: scip_prob.c:1641
int SCIPgetNBinVars(SCIP *scip)
Definition: scip_prob.c:2037
SCIP_Bool SCIPisObjIntegral(SCIP *scip)
Definition: scip_prob.c:1562
#define SCIPdebugMsg
Definition: scip_message.h:78
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
void SCIPswapPointers(void **pointer1, void **pointer2)
Definition: misc.c:10399
void SCIPswapReals(SCIP_Real *value1, SCIP_Real *value2)
Definition: misc.c:10386
int SCIPgetNLPBranchCands(SCIP *scip)
Definition: scip_branch.c:428
SCIP_VAR * SCIPcolGetVar(SCIP_COL *col)
Definition: lp.c:17042
SCIP_Real * SCIPcolGetVals(SCIP_COL *col)
Definition: lp.c:17161
SCIP_ROW ** SCIPcolGetRows(SCIP_COL *col)
Definition: lp.c:17151
int SCIPcolGetNLPNonz(SCIP_COL *col)
Definition: lp.c:17140
SCIP_RETCODE SCIPaddPoolCut(SCIP *scip, SCIP_ROW *row)
Definition: scip_cut.c:361
SCIP_Bool SCIPaggrRowHasRowBeenAdded(SCIP_AGGRROW *aggrrow, SCIP_ROW *row)
Definition: cuts.c:2518
SCIP_RETCODE SCIPcutGenerationHeuristicCMIR(SCIP *scip, SCIP_SOL *sol, SCIP_Bool postprocess, SCIP_Real boundswitch, SCIP_Bool usevbds, SCIP_Bool allowlocal, int maxtestdelta, int *boundsfortrans, SCIP_BOUNDTYPE *boundtypesfortrans, SCIP_Real minfrac, SCIP_Real maxfrac, SCIP_AGGRROW *aggrrow, SCIP_Real *cutcoefs, SCIP_Real *cutrhs, int *cutinds, int *cutnnz, SCIP_Real *cutefficacy, int *cutrank, SCIP_Bool *cutislocal, SCIP_Bool *success)
Definition: cuts.c:4212
SCIP_RETCODE SCIPaggrRowCreate(SCIP *scip, SCIP_AGGRROW **aggrrow)
Definition: cuts.c:1723
SCIP_RETCODE SCIPcalcKnapsackCover(SCIP *scip, SCIP_SOL *sol, SCIP_Bool allowlocal, SCIP_AGGRROW *aggrrow, SCIP_Real *cutcoefs, SCIP_Real *cutrhs, int *cutinds, int *cutnnz, SCIP_Real *cutefficacy, int *cutrank, SCIP_Bool *cutislocal, SCIP_Bool *success)
Definition: cuts.c:8047
void SCIPaggrRowClear(SCIP_AGGRROW *aggrrow)
Definition: cuts.c:2133
SCIP_Bool SCIPisCutNew(SCIP *scip, SCIP_ROW *row)
Definition: scip_cut.c:343
SCIP_Bool SCIPisCutEfficacious(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:117
SCIP_Bool SCIPisEfficacious(SCIP *scip, SCIP_Real efficacy)
Definition: scip_cut.c:135
int SCIPaggrRowGetNRows(SCIP_AGGRROW *aggrrow)
Definition: cuts.c:2486
void SCIPaggrRowFree(SCIP *scip, SCIP_AGGRROW **aggrrow)
Definition: cuts.c:1755
int * SCIPaggrRowGetInds(SCIP_AGGRROW *aggrrow)
Definition: cuts.c:2541
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
void SCIPaggrRowRemoveZeros(SCIP *scip, SCIP_AGGRROW *aggrrow, SCIP_Bool useglbbounds, SCIP_Bool *valid)
Definition: cuts.c:2471
int SCIPaggrRowGetNNz(SCIP_AGGRROW *aggrrow)
Definition: cuts.c:2551
SCIP_RETCODE SCIPaggrRowAddRow(SCIP *scip, SCIP_AGGRROW *aggrrow, SCIP_ROW *row, SCIP_Real weight, int sidetype)
Definition: cuts.c:1859
static INLINE SCIP_Real SCIPaggrRowGetProbvarValue(SCIP_AGGRROW *aggrrow, int probindex)
Definition: cuts.h:251
int * SCIPaggrRowGetRowInds(SCIP_AGGRROW *aggrrow)
Definition: cuts.c:2496
SCIP_RETCODE SCIPaggrRowAddObjectiveFunction(SCIP *scip, SCIP_AGGRROW *aggrrow, SCIP_Real rhs, SCIP_Real scale)
Definition: cuts.c:2004
SCIP_RETCODE SCIPcalcFlowCover(SCIP *scip, SCIP_SOL *sol, SCIP_Bool postprocess, SCIP_Real boundswitch, SCIP_Bool allowlocal, SCIP_AGGRROW *aggrrow, SCIP_Real *cutcoefs, SCIP_Real *cutrhs, int *cutinds, int *cutnnz, SCIP_Real *cutefficacy, int *cutrank, SCIP_Bool *cutislocal, SCIP_Bool *success)
Definition: cuts.c:7417
SCIP_RETCODE SCIPgetLPRowsData(SCIP *scip, SCIP_ROW ***rows, int *nrows)
Definition: scip_lp.c:570
SCIP_LPSOLSTAT SCIPgetLPSolstat(SCIP *scip)
Definition: scip_lp.c:168
int SCIPgetNLPCols(SCIP *scip)
Definition: scip_lp.c:527
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
#define SCIPreallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:128
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
#define SCIPfreeBufferArrayNull(scip, ptr)
Definition: scip_mem.h:137
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
SCIP_Real SCIPgetRowMaxCoef(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1922
SCIP_Real SCIProwGetLhs(SCIP_ROW *row)
Definition: lp.c:17292
SCIP_Real SCIPgetRowMinCoef(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1904
SCIP_Bool SCIProwIsModifiable(SCIP_ROW *row)
Definition: lp.c:17411
SCIP_RETCODE SCIPcacheRowExtensions(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1635
SCIP_Real SCIProwGetParallelism(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7724
int SCIProwGetNNonz(SCIP_ROW *row)
Definition: lp.c:17213
SCIP_COL ** SCIProwGetCols(SCIP_ROW *row)
Definition: lp.c:17238
SCIP_Real SCIProwGetRhs(SCIP_ROW *row)
Definition: lp.c:17302
int SCIProwGetNLPNonz(SCIP_ROW *row)
Definition: lp.c:17227
SCIP_Real SCIProwGetNorm(SCIP_ROW *row)
Definition: lp.c:17268
int SCIProwGetLPPos(SCIP_ROW *row)
Definition: lp.c:17501
SCIP_RETCODE SCIPflushRowExtensions(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1658
SCIP_Bool SCIProwIsLocal(SCIP_ROW *row)
Definition: lp.c:17401
SCIP_RETCODE SCIPmakeRowIntegral(SCIP *scip, SCIP_ROW *row, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Bool *success)
Definition: scip_lp.c:1844
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
const char * SCIProwGetName(SCIP_ROW *row)
Definition: lp.c:17351
SCIP_RETCODE SCIPreleaseRow(SCIP *scip, SCIP_ROW **row)
Definition: scip_lp.c:1562
SCIP_RETCODE SCIPcreateEmptyRowSepa(SCIP *scip, SCIP_ROW **row, SCIP_SEPA *sepa, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1453
int SCIProwGetRank(SCIP_ROW *row)
Definition: lp.c:17381
void SCIProwChgRank(SCIP_ROW *row, int rank)
Definition: lp.c:17534
SCIP_Real SCIProwGetDualsol(SCIP_ROW *row)
Definition: lp.c:17312
int SCIPgetRowNumIntCols(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1886
SCIP_Real * SCIProwGetVals(SCIP_ROW *row)
Definition: lp.c:17248
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2144
SCIP_RETCODE SCIPincludeSepaBasic(SCIP *scip, SCIP_SEPA **sepa, const char *name, const char *desc, int priority, int freq, SCIP_Real maxbounddist, SCIP_Bool usessubscip, SCIP_Bool delay, SCIP_DECL_SEPAEXECLP((*sepaexeclp)), SCIP_DECL_SEPAEXECSOL((*sepaexecsol)), SCIP_SEPADATA *sepadata)
Definition: scip_sepa.c:109
int SCIPsepaGetFreq(SCIP_SEPA *sepa)
Definition: sepa.c:787
const char * SCIPsepaGetName(SCIP_SEPA *sepa)
Definition: sepa.c:743
int SCIPsepaGetNCallsAtNode(SCIP_SEPA *sepa)
Definition: sepa.c:880
SCIP_RETCODE SCIPsetSepaFree(SCIP *scip, SCIP_SEPA *sepa, SCIP_DECL_SEPAFREE((*sepafree)))
Definition: scip_sepa.c:167
SCIP_SEPADATA * SCIPsepaGetData(SCIP_SEPA *sepa)
Definition: sepa.c:633
void SCIPsepaSetData(SCIP_SEPA *sepa, SCIP_SEPADATA *sepadata)
Definition: sepa.c:643
void SCIPsetSepaIsParentsepa(SCIP *scip, SCIP_SEPA *sepa)
Definition: scip_sepa.c:303
SCIP_RETCODE SCIPsetSepaCopy(SCIP *scip, SCIP_SEPA *sepa, SCIP_DECL_SEPACOPY((*sepacopy)))
Definition: scip_sepa.c:151
void SCIPsetSepaParentsepa(SCIP *scip, SCIP_SEPA *sepa, SCIP_SEPA *parentsepa)
Definition: scip_sepa.c:318
SCIP_RETCODE SCIPgetSolVals(SCIP *scip, SCIP_SOL *sol, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_sol.c:1250
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
int SCIPgetNSepaRounds(SCIP *scip)
SCIP_Longint SCIPgetNLPs(SCIP *scip)
SCIP_Real SCIPgetCutoffbound(SCIP *scip)
SCIP_Real SCIPinfinity(SCIP *scip)
SCIP_Real SCIPfeasFrac(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisPositive(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisFeasZero(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisInfinity(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisZero(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPepsilon(SCIP *scip)
SCIP_Real SCIPsumepsilon(SCIP *scip)
SCIP_COL * SCIPvarGetCol(SCIP_VAR *var)
Definition: var.c:17788
SCIP_Real * SCIPvarGetVlbCoefs(SCIP_VAR *var)
Definition: var.c:18291
SCIP_Real SCIPvarGetUbLocal(SCIP_VAR *var)
Definition: var.c:18143
SCIP_Real SCIPvarGetUbGlobal(SCIP_VAR *var)
Definition: var.c:18087
SCIP_RETCODE SCIPgetVarClosestVub(SCIP *scip, SCIP_VAR *var, SCIP_SOL *sol, SCIP_Real *closestvub, int *closestvubidx)
Definition: scip_var.c:6755
int SCIPvarGetProbindex(SCIP_VAR *var)
Definition: var.c:17767
SCIP_RETCODE SCIPgetVarClosestVlb(SCIP *scip, SCIP_VAR *var, SCIP_SOL *sol, SCIP_Real *closestvlb, int *closestvlbidx)
Definition: scip_var.c:6732
SCIP_Real SCIPvarGetLbLocal(SCIP_VAR *var)
Definition: var.c:18133
SCIP_VAR ** SCIPvarGetVlbVars(SCIP_VAR *var)
Definition: var.c:18281
SCIP_Real SCIPvarGetLbGlobal(SCIP_VAR *var)
Definition: var.c:18077
SCIP_VAR ** SCIPvarGetVubVars(SCIP_VAR *var)
Definition: var.c:18323
SCIP_Real * SCIPvarGetVubCoefs(SCIP_VAR *var)
Definition: var.c:18333
SCIP_Bool SCIPvarIsInLP(SCIP_VAR *var)
Definition: var.c:17799
SCIP_RETCODE SCIPincludeSepaAggregation(SCIP *scip)
SCIP_Bool SCIPsortedvecFindInt(int *intarray, int val, int len, int *pos)
void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len)
int SCIPsnprintf(char *t, int len, const char *s,...)
Definition: misc.c:10880
static SCIP_Real negate(SCIP_Real x)
memory allocation routines
#define BMSclearMemoryArray(ptr, num)
Definition: memory.h:130
public methods for LP management
public methods for message output
#define SCIPdebug(x)
Definition: pub_message.h:93
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for separators
public methods for problem variables
public methods for branching rule plugins and branching
public methods for cuts and aggregation rows
general public methods
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for separator plugins
public methods for solutions
public methods for querying solving statistics
public methods for the branch-and-bound tree
public methods for SCIP variables
#define SEPA_PRIORITY
#define DEFAULT_MAXTRIES
struct AggregationData AGGREGATIONDATA
#define BOUNDSWITCH
#define SEPA_DELAY
#define DEFAULT_SLACKSCORE
#define DEFAULT_MAXAGGRS
#define DEFAULT_MAXFAILS
#define MAXFRAC
static SCIP_RETCODE addCut(SCIP *scip, SCIP_SOL *sol, SCIP_SEPA *sepa, SCIP_Bool makeintegral, SCIP_Real *cutcoefs, int *cutinds, int cutnnz, SCIP_Real cutrhs, SCIP_Real cutefficacy, SCIP_Bool cutislocal, SCIP_Bool cutremovable, int cutrank, const char *cutclassname, SCIP_Bool *cutoff, int *ncuts, SCIP_ROW **thecut)
#define DEFAULT_AGGRTOL
#define DEFAULT_DYNAMICCUTS
static SCIP_DECL_SEPACOPY(sepaCopyAggregation)
static SCIP_Bool getRowAggregationCandidates(AGGREGATIONDATA *aggrdata, int probvaridx, SCIP_ROW ***rows, SCIP_Real **rowvarcoefs, int *nrows, int *ngoodrows)
#define POSTPROCESS
#define SEPA_DESC
static SCIP_DECL_SEPAFREE(sepaFreeAggregation)
static SCIP_Real aggrdataGetBoundDist(AGGREGATIONDATA *aggrdata, int probvaridx)
#define DEFAULT_MAXSLACKROOT
#define MAKECONTINTEGRAL
#define DEFAULT_MAXFAILSROOT
#define DEFAULT_MAXAGGRSROOT
#define DEFAULT_MAXROUNDSROOT
#define SEPA_USESSUBSCIP
#define DEFAULT_MAXSLACK
static SCIP_RETCODE aggregateNextRow(SCIP *scip, SCIP_SEPADATA *sepadata, SCIP_Real *rowlhsscores, SCIP_Real *rowrhsscores, AGGREGATIONDATA *aggrdata, SCIP_AGGRROW *aggrrow, int *naggrs, SCIP_Bool *success)
#define DEFAULT_TRYNEGSCALING
#define DEFAULT_MAXTRIESROOT
#define DEFAULT_MAXROWFAC
static SCIP_DECL_SEPAEXECLP(sepaExeclpAggregation)
#define DEFAULT_MAXSEPACUTSROOT
#define DEFAULT_DENSITYSCORE
#define DEFAULT_DENSITYOFFSET
static SCIP_DECL_SEPAEXECSOL(sepaExecsolAggregation)
#define DEFAULT_FIXINTEGRALRHS
static SCIP_RETCODE setupAggregationData(SCIP *scip, SCIP_SOL *sol, SCIP_Bool allowlocal, AGGREGATIONDATA *aggrdata)
#define USEVBDS
#define DEFAULT_MAXTESTDELTA
#define SEPA_MAXBOUNDDIST
#define SEPA_FREQ
#define MINFRAC
#define DEFAULT_MAXSEPACUTS
#define DEFAULT_MAXAGGDENSITY
#define SEPA_NAME
static SCIP_RETCODE aggregation(SCIP *scip, AGGREGATIONDATA *aggrdata, SCIP_SEPA *sepa, SCIP_SOL *sol, SCIP_Bool allowlocal, SCIP_Real *rowlhsscores, SCIP_Real *rowrhsscores, int startrow, int maxaggrs, SCIP_Bool *wastried, SCIP_Bool *cutoff, int *cutinds, SCIP_Real *cutcoefs, SCIP_Bool negate, int *ncuts)
static SCIP_Real getRowFracActivity(SCIP_ROW *row, SCIP_Real *fractionalities)
#define DEFAULT_MAXROUNDS
static void destroyAggregationData(SCIP *scip, AGGREGATIONDATA *aggrdata)
#define DEFAULT_MAXROWDENSITY
static SCIP_RETCODE separateCuts(SCIP *scip, SCIP_SEPA *sepa, SCIP_SOL *sol, SCIP_Bool allowlocal, int depth, SCIP_RESULT *result)
flow cover and complemented mixed integer rounding cuts separator (Marchand's version)
SCIP_AGGRROW * aggrrow
SCIP_Real * bounddist
SCIP_ROW ** aggrrows
SCIP_Real * aggrrowscoef
@ SCIP_LPSOLSTAT_OPTIMAL
Definition: type_lp.h:43
@ SCIP_DIDNOTRUN
Definition: type_result.h:42
@ SCIP_CUTOFF
Definition: type_result.h:48
@ SCIP_DIDNOTFIND
Definition: type_result.h:44
@ SCIP_SEPARATED
Definition: type_result.h:49
enum SCIP_Result SCIP_RESULT
Definition: type_result.h:61
@ SCIP_OKAY
Definition: type_retcode.h:42
@ SCIP_ERROR
Definition: type_retcode.h:43
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
struct SCIP_SepaData SCIP_SEPADATA
Definition: type_sepa.h:52