Scippy

SCIP

Solving Constraint Integer Programs

sudoku_main.cpp
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file sudoku_main.cpp
26 * @brief Sudoku solver built using constrained integer programming
27 * @author Naga V C Gudapati
28*/
29
30#include <iostream>
31#include <sstream>
32
33#include "sudoku_utils.h"
34
35#include <scip/scip.h>
36#include <scip/scipdefplugins.h>
37
38
39int main(int argc, char *argv[])
40{
41 /* declaration of variables used in forloops later on */
42 int i = 0;
43 int j = 0;
44 int k = 0;
45 int p = 0;
46 int q = 0;
47
48 if( argc < 2 )
49 {
50 std::cerr << "call " << argv[0] << " <puzzle file> " << "\n";
51 exit(1);
52 }
53
54 std::string puzzlefilepath = argv[1];
55 auto puzzle = sudoku::getSudokuPuzzle(puzzlefilepath);
56 std::cout << "The unsolved Sudoku Puzzle is: " << "\n";
57 sudoku::printSudoku(puzzle);
58
59 /*
60 * Setting up the SCIP environment
61 */
62 SCIP* scip = nullptr; /* Declaring the scip environment*/
63 SCIP_CALL( SCIPcreate(&scip) ); /*Creating the SCIP environment */
64 SCIP_CALL( SCIPincludeDefaultPlugins(scip) ); /* include default plugins */
65 SCIP_CALL( SCIPcreateProbBasic(scip, "sudoku") ); /* creating the SCIP Problem. */
66
67 /*
68 * The Sudoku puzzle is a feasibility problem and the objsense can be anything
69 */
71
72 /*
73 * We have to define 9x9x9 variables. Let x_{ijk} where i = 1...9, j = 1...9 and k = 1..9 be those binary variables.
74 * x_{ijk} is the the binary variable representing the number k (1 or 2 or ... 9) in the ith row and jth column
75 */
76 std::vector<std::vector<std::vector< SCIP_VAR* >>> xvars(9, std::vector<std::vector< SCIP_VAR* >>(9, std::vector< SCIP_VAR* >(9)));
77 std::ostringstream namebuf;
78
79 for( i = 0; i < 9; ++i )
80 {
81 for( j = 0; j < 9; ++j )
82 {
83 for( k = 0; k < 9; ++k )
84 {
85 SCIP_VAR* var = nullptr;
86 namebuf.str("");
87 namebuf << "x[" << i << "," << j << "," << k << "]";
89 scip, /* SCIP environment */
90 &var, /* reference to the variable */
91 namebuf.str().c_str(), /* name of the variable */
92 0.0, /* lower bound of the variable */
93 1.0, /* upper bound of the variable */
94 1.0, /* obj. coefficient. */
95 SCIP_VARTYPE_BINARY /* variable is binary */
96 ) );
97 SCIP_CALL( SCIPaddVar(scip, var) );
98 xvars[i][j][k] = var;
99 }
100 }
101 }
102
103 /* for each column j and each number k we must have that only one entry of column j is k; since x_{ijk} is 1
104 * if and only if the i-th entry of the j-th column is k, we can model this requirement with the following linear
105 * constraint:
106 * x_1jk + x_2jk + x_3jk + ... + x_9jk = 1 for each j and k
107 */
108 std::vector< SCIP_CONS* > columnconstraints;
109 for( j = 0; j < 9; ++j )
110 {
111 for( k = 0; k < 9; ++k )
112 {
113 SCIP_CONS* cons = nullptr;
114 namebuf.str("");
115 namebuf << "col_" << j << "_" << k << "]";
116
117 /* we first create an empty equality constraint (i.e. the lhs and rhs are equal to 1) and then add the
118 * variables
119 */
121 scip,
122 &cons, /* pointer to hold the created constraint */
123 namebuf.str().c_str(), /* name of constraint */
124 0, /* number of nonzeros in the constraint */
125 nullptr, /* array with variables of constraint entries */
126 nullptr, /* array with coefficients of constraint entries */
127 1.0, /* left hand side of constraint */
128 1.0) ); /* right hand side of constraint */
129 for( i = 0; i < 9; ++i )
130 {
131 SCIP_CALL( SCIPaddCoefLinear(scip, cons, xvars[i][j][k], 1.0) );
132 }
133
134 SCIP_CALL( SCIPaddCons(scip, cons) );
135 columnconstraints.push_back(cons);
136 }
137 }
138
139 /* for each row i and each number k we must have that only one entry of row i is k; we can model
140 * this requirement with the following linear constraint:
141 * x_i1k + x_i2k + x_i3k + ... + x_i9k = 1 for each i and k
142 */
143 std::vector< SCIP_CONS* > rowconstraints;
144 for( i = 0; i < 9; ++i )
145 {
146 for( k = 0; k < 9; ++k )
147 {
148 SCIP_CONS* cons = nullptr;
149
150 namebuf.str("");
151 namebuf << "row_" << i << "_" << k << "]";
152
153 /* we first create an empty equality constraint (i.e. the lhs and rhs are equal to 1) and then add the
154 * variables
155 */
157 scip,
158 &cons, /* pointer to hold the created constraint */
159 namebuf.str().c_str(), /* name of constraint */
160 0, /* number of nonzeros in the constraint */
161 nullptr, /* array with variables of constraint entries */
162 nullptr, /* array with coefficients of constraint entries */
163 1.0, /* left hand side of constraint */
164 1.0) ); /* right hand side of constraint */
165 for( j = 0; j < 9; ++j )
166 {
167 SCIP_CALL( SCIPaddCoefLinear(scip, cons, xvars[i][j][k], 1.0) );
168 }
169
170 SCIP_CALL( SCIPaddCons(scip, cons) );
171 rowconstraints.push_back(cons);
172 }
173 }
174
175 /* for each 3x3 subgrid we must we must have that only one entry is k;
176 * a subgrid is formed by the entries (i,j) such that i is in {p, p + 1, p + 2} and j is in {q, q + 1, q + 2} for
177 * each (p, q) in {(1,1), (1,4), (1,7), (4,1), (4, 4), (4, 7), (7, 1), (7, 4), (7, 7)}
178 * for the (p,q)-th subgrid we can model this requirement with the following linear constraint:
179 * sum_{i in [p, p + 2], j in [q, q + 2]} x_ijk = 1 for each k
180 */
181 std::vector< SCIP_CONS* > subgridconstraints;
182 for( k = 0; k < 9; ++k )
183 {
184 for( p = 0; p < 3; ++p )
185 {
186 for( q = 0; q < 3; ++q )
187 {
188 SCIP_CONS* cons = nullptr;
189
190 namebuf.str("");
191 namebuf << "subgrid_" << k << "_" << p << "_" << q << "]";
192
193 /* we first create an empty an equality constraint (i.e. the lhs and rhs are equal to 1) and then add the
194 * variables
195 */
197 scip,
198 &cons, /* pointer to hold the created constraint */
199 namebuf.str().c_str(), /* name of constraint */
200 0, /* number of nonzeros in the constraint */
201 nullptr, /* array with variables of constraint entries */
202 nullptr, /* array with coefficients of constraint entries */
203 1.0, /* left hand side of constraint */
204 1.0) ); /* right hand side of constraint */
205
206 /* since we are using 0 based indexing we should be careful with the loop indices. */
207 for( j = 3 * (p + 1) - 3; j < 3 * (p + 1); ++j )
208 {
209 for( i = 3 * (q + 1) - 3; i < 3 * (q + 1); ++i )
210 {
211 SCIP_CALL( SCIPaddCoefLinear(scip, cons, xvars[i][j][k], 1.0) );
212 }
213 }
214 SCIP_CALL( SCIPaddCons(scip, cons) );
215 subgridconstraints.push_back(cons);
216 }
217 }
218 }
219
220
221 /* so far we have required that for each column, row, and subgrid only one occurence of {1, ..., 9} appears.
222 * However, we have not yet imposed that they must appear in different positions. So, for example, a solution
223 * that says that the numbers 3 and 4 appear in entry (1,1) could be feasible.
224 * However, that can only happen if some entry (i,j) has no number assigned to it.
225 * Thus, by requiring that each entry (i,j) has a number assigned to it we obtain a correct model.
226 * This requirement with the following linear constraint:
227 * x_ij1 + x_ij2k + x_ij3 + ... + x_ij9 = 1 for each i and j
228 *
229 */
230 std::vector< SCIP_CONS* > fillgridconstraints;
231 for( i = 0; i < 9; ++i )
232 {
233 for( j = 0; j < 9; ++j )
234 {
235 SCIP_CONS* cons = nullptr;
236
237 namebuf.str("");
238 namebuf << "fillgrid_" << i << "_" << j << "]";
239
240 /* we first create an empty an equality constraint (i.e. the lhs and rhs are equal to 1) and then add the
241 * variables
242 */
244 scip,
245 &cons, /* pointer to hold the created constraint */
246 namebuf.str().c_str(), /* name of constraint */
247 0, /* number of nonzeros in the constraint */
248 nullptr, /* array with variables of constraint entries */
249 nullptr, /* array with coefficients of constraint entries */
250 1.0, /* left hand side of constraint */
251 1.0) ); /* right hand side of constraint */
252
253 for( k = 0; k < 9; ++k )
254 {
255 SCIP_CALL( SCIPaddCoefLinear(scip, cons, xvars[i][j][k], 1.0) );
256 }
257
258 SCIP_CALL( SCIPaddCons(scip, cons) );
259 fillgridconstraints.push_back(cons);
260 }
261 }
262
263
264 /* we use SCIPfixVar to fix the binary variables corresponding to the given value in the puzzle to 1.
265 * see https://www.scipopt.org/doc-7.0.1/html/group__PublicVariableMethods.php#ga7965b16efcb2f8cdf7e289198c5cbe16
266 * for more info
267 */
268 for( i = 0; i < 9; ++i )
269 {
270 for( j = 0; j < 9; ++j )
271 {
272 /* The unsolved puzzle where there are blanks are represented by -1 in the puzzle datastructure */
273 if( puzzle[i][j] > 0 )
274 {
275 SCIP_Bool infeasible;
276 SCIP_Bool fixed;
277
278 SCIP_CALL( SCIPfixVar(scip, xvars[i][j][puzzle[i][j] - 1], 1.0, &infeasible, &fixed) );
279
280 assert(fixed == TRUE);
281 /* we are assuming that the puzzle is not instantly infeasible */
282 assert(infeasible == FALSE);
283 }
284 }
285 }
286
287
288 /* in c++, we can set the SCIP parameters by <tt> sSCIPsetIntParam(SCIP* scip, "parameter", param_value) ) </tt> */
289 SCIP_CALL( SCIPsetIntParam(scip, "display/verblevel", 0) ); /* turns off the SCIP output */
291
292 /* Some wrongly generated sudoku puzzles can be infeasible. So we use the solnstatus to display different types of
293 * output.
294 */
295 SCIP_STATUS solutionstatus = SCIPgetStatus( scip );
296
297 if( solutionstatus == SCIP_STATUS_OPTIMAL )
298 {
299 /* SCIP_STATUS_OPTIMAL status indicates that an optimal solution was found, hence we can print the final puzzle */
300 SCIP_SOL* sol;
301 sol = SCIPgetBestSol( scip );
302
303 for( i = 0; i < 9; ++i )
304 {
305 for( j = 0; j < 9; ++j )
306 {
307 for( k = 0; k < 9; ++k )
308 {
309 if( SCIPgetSolVal(scip, sol, xvars[i][j][k]) > 0 )
310 {
311 /* As we are using 0 based indices, to display the final puzzle, we should increment values by 1. */
312 puzzle[i][j] = k + 1;
313 }
314 }
315 }
316 }
317 std::cout << "The solved puzzle is: "
318 << "\n";
319 sudoku::printSudoku( puzzle );
320 }
321 else if( solutionstatus == SCIP_STATUS_INFEASIBLE )
322 {
323 /* solutions status of SCIP_STATUS_INFEASIBLE indicates that the puzzle is infeasible. */
324 std::cout << "Check the Input puzzle"
325 << "\n";
326 }
327 else
328 {
329 std::cerr << "Something went wrong during the optimization." << "\n";
330 exit(1);
331 }
332
333 /*freeing the variables */
334 for( i = 0; i < 9; ++i )
335 {
336 for( j = 0; j < 9; ++j )
337 {
338 for( k = 0; k < 9; ++k )
339 {
340 SCIP_CALL( SCIPreleaseVar(scip, &xvars[i][j][k]) );
341 }
342 }
343 }
344 xvars.clear();
345
346 /* freeing the constraints
347 * we use C++11's auto keyword to iterate over the constraints and free them.
348 */
349 for( auto &constr : columnconstraints )
350 {
351 SCIP_CALL( SCIPreleaseCons(scip, &constr) );
352 }
353 columnconstraints.clear();
354
355 for( auto &constr : rowconstraints )
356 {
357 SCIP_CALL( SCIPreleaseCons(scip, &constr) );
358 }
359 rowconstraints.clear();
360
361 for( auto &constr : subgridconstraints )
362 {
363 SCIP_CALL( SCIPreleaseCons(scip, &constr) );
364 }
365 subgridconstraints.clear();
366
367 for( auto &constr : fillgridconstraints )
368 {
369 SCIP_CALL( SCIPreleaseCons(scip, &constr) );
370 }
371 fillgridconstraints.clear();
372
373 /*freeing scip */
374
376}
#define SCIP_Bool
Definition: def.h:91
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define SCIP_CALL(x)
Definition: def.h:373
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
SCIP_RETCODE SCIPfree(SCIP **scip)
Definition: scip_general.c:349
SCIP_RETCODE SCIPcreate(SCIP **scip)
Definition: scip_general.c:317
SCIP_STATUS SCIPgetStatus(SCIP *scip)
Definition: scip_general.c:508
SCIP_RETCODE SCIPaddVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_prob.c:1668
SCIP_RETCODE SCIPaddCons(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:2770
SCIP_RETCODE SCIPsetObjsense(SCIP *scip, SCIP_OBJSENSE objsense)
Definition: scip_prob.c:1242
SCIP_RETCODE SCIPcreateProbBasic(SCIP *scip, const char *name)
Definition: scip_prob.c:180
SCIP_RETCODE SCIPsetIntParam(SCIP *scip, const char *name, int value)
Definition: scip_param.c:487
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_SOL * SCIPgetBestSol(SCIP *scip)
Definition: scip_sol.c:2165
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_RETCODE SCIPsolve(SCIP *scip)
Definition: scip_solve.c:2502
SCIP_RETCODE SCIPreleaseVar(SCIP *scip, SCIP_VAR **var)
Definition: scip_var.c:1248
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8399
SCIP_RETCODE SCIPcreateVarBasic(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype)
Definition: scip_var.c:194
void printSudoku(const std::vector< std::vector< int > > &sudokupuzzle)
Definition: sudoku_utils.h:88
std::vector< std::vector< int > > getSudokuPuzzle(std::string &filepath)
Definition: sudoku_utils.h:43
SCIP callable library.
SCIP_RETCODE SCIPincludeDefaultPlugins(SCIP *scip)
default SCIP plugins
int main(int argc, char *argv[])
Definition: sudoku_main.cpp:39
A set of utilities that are used to read the puzzle and display the puzzle.
@ SCIP_OBJSENSE_MINIMIZE
Definition: type_prob.h:48
@ SCIP_STATUS_OPTIMAL
Definition: type_stat.h:61
@ SCIP_STATUS_INFEASIBLE
Definition: type_stat.h:62
enum SCIP_Status SCIP_STATUS
Definition: type_stat.h:67
@ SCIP_VARTYPE_BINARY
Definition: type_var.h:62