lpi_cpx.c
Go to the documentation of this file.
40/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
62/* this macro is only called in functions returning SCIP_Bool; thus, we return FALSE if there is an error in optimized mode */
74/* At several places we need to guarantee to have a factorization of an optimal basis and call the simplex to produce
75 * it. In a numerical perfect world, this should need no iterations. However, due to numerical inaccuracies after
77#define CPX_REFACTORMAXITERS 50 /* maximal number of iterations allowed for producing a refactorization of the basis */
79/* CPLEX seems to ignore bounds with absolute value less than 1e-10. There is no interface define for this constant yet,
83typedef SCIP_DUALPACKET COLPACKET; /* each column needs two bits of information (basic/on_lower/on_upper) */
85typedef SCIP_DUALPACKET ROWPACKET; /* each row needs two bit of information (basic/on_lower/on_upper) */
174 SCIP_Real conditionlimit; /**< maximum condition number of LP basis counted as stable (-1.0: no limit) */
180#if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
181 int pseudonthreads; /**< number of threads that SCIP set for the LP solver, but due to CPLEX bug,
372 /* because the basis status values are equally defined in SCIP and CPLEX, they don't need to be transformed */
497 CHECK_ZERO( lpi->messagehdlr, CPXgetintparam(lpi->cpxenv, intparam[i], &(cpxparam->intparval[i])) );
501 CHECK_ZERO( lpi->messagehdlr, CPXgetdblparam(lpi->cpxenv, dblparam[i], &(cpxparam->dblparval[i])) );
524 /* due to a bug in CPLEX 12.7.0 and CPLEX 12.7.1, we need to disable scaling for these versions */
564 CHECK_ZERO( lpi->messagehdlr, CPXsetintparam(lpi->cpxenv, intparam[i], lpi->curparam.intparval[i]) );
575 CHECK_ZERO( lpi->messagehdlr, CPXsetdblparam(lpi->cpxenv, dblparam[i], lpi->curparam.dblparval[i]) );
781 * -> To keep SCIP's meaning of the rhs value, we would like to use negative range values: rng := lhs - rhs,
789 * -> Because of this bug, we have to use an additional rhsarray[] for the converted right hand sides and
790 * use rhsarray[i] = lhs[i] and rngarray[i] = rhs[i] - lhs[i] for ranged rows to keep the range values
859/** converts CPLEX's sen/rhs/rng triplets into SCIP's lhs/rhs pairs, only storing the left hand side */
907/** converts CPLEX's sen/rhs/rng triplets into SCIP's lhs/rhs pairs, only storing the right hand side */
973/** after restoring the old lp data in CPLEX we need to resolve the lp to be able to retrieve correct information */
981 /* modifying the LP, restoring the old LP, and loading the old basis is not enough for CPLEX to be able to return the
984 * this may happen after manual strong branching on an integral variable, or after conflict analysis on a strong
985 * branching conflict created a constraint that is not able to modify the LP but trigger the additional call of the
988 * In a numerical perfect world, CPX_REFACTORMAXITERS below should be zero. However, due to numerical inaccuracies
994 SCIPmessagePrintWarning(lpi->messagehdlr, "CPLEX needed %d phase 1 iterations to restore optimal basis.\n", CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp));
996 SCIPmessagePrintWarning(lpi->messagehdlr, "CPLEX needed %d iterations to restore optimal basis.\n", CPXgetitcnt(lpi->cpxenv, lpi->cpxlp));
1015 (CPX_VERSION_VERSION/10) + '0', (CPX_VERSION_VERSION%10) + '0', '.', (CPX_VERSION_RELEASE/10) + '0', (CPX_VERSION_RELEASE%10) + '0', '.', CPX_VERSION_MODIFICATION + '0', '.', CPX_VERSION_FIX + '0'
1017 CPX_VERSION_VERSION + '0', '.',CPX_VERSION_RELEASE + '0', '.', CPX_VERSION_MODIFICATION + '0', '.', CPX_VERSION_FIX + '0'
1018#elif (defined CPX_VERSION_VERSION) && (CPX_VERSION_VERSION >= 10) && (CPX_VERSION_RELEASE <= 9)
1019 (CPX_VERSION_VERSION/10) + '0', (CPX_VERSION_VERSION%10) + '0', '.', CPX_VERSION_RELEASE + '0', '.', CPX_VERSION_MODIFICATION + '0', '.', CPX_VERSION_FIX + '0'
1020#elif (defined CPX_VERSION_VERSION) && (CPX_VERSION_VERSION <= 9) && (CPX_VERSION_RELEASE >= 10)
1021 CPX_VERSION_VERSION + '0', '.', (CPX_VERSION_RELEASE/10) + '0', (CPX_VERSION_RELEASE%10) + '0', '.', CPX_VERSION_MODIFICATION + '0', '.', CPX_VERSION_FIX + '0'
1023 (CPX_VERSION / 100) + '0', '.', ((CPX_VERSION % 100) / 10) + '0', '.', (CPX_VERSION % 10) + '0', '.', CPX_SUBVERSION + '0'
1063 int* intInfo /**< integrality array (0: continuous, 1: integer). May be NULL iff ncols is 0. */
1120 assert(sizeof(SCIP_Real) == sizeof(double)); /* CPLEX only works with doubles as floating points */ /*lint !e506*/
1132#if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
1133 /* manually set number of threads to 1 to avoid huge system load due to CPLEX bug (version 1100) or segmentation fault (version 1220) */
1137#ifdef SCIP_DISABLED_CODE /* turning presolve off seems to be faster than turning it off on demand (if presolve detects infeasibility) */
1302 CHECK_ZERO( lpi->messagehdlr, CPXcopylpwnames(lpi->cpxenv, lpi->cpxlp, ncols, nrows, cpxObjsen(objsen), obj,
1303 lpi->rhsarray, lpi->senarray, beg, cnt, ind, val, lb, ub, lpi->rngarray, colnames, rownames) );
1324 const int* beg, /**< start index of each column in ind- and val-array, or NULL if nnonz == 0 */
1348 /* perform check that no new rows are added - this is forbidden, see the CPLEX documentation */
1360 CHECK_ZERO( lpi->messagehdlr, CPXaddcols(lpi->cpxenv, lpi->cpxlp, ncols, nnonz, obj, beg, ind, val, lb, ub, colnames) );
1364 CHECK_ZERO( lpi->messagehdlr, CPXnewcols(lpi->cpxenv, lpi->cpxlp, ncols, obj, lb, ub, NULL, colnames) );
1397/** deletes columns from SCIP_LP; the new position of a column must not be greater that its old position */
1466 CHECK_ZERO( lpi->messagehdlr, CPXaddrows(lpi->cpxenv, lpi->cpxlp, 0, nrows, nnonz, lpi->rhsarray, lpi->senarray, beg, ind, val, NULL,
1471 CHECK_ZERO( lpi->messagehdlr, CPXnewrows(lpi->cpxenv, lpi->cpxlp, nrows, lpi->rhsarray, lpi->senarray, NULL, rownames) );
1482 CHECK_ZERO( lpi->messagehdlr, CPXchgrngval(lpi->cpxenv, lpi->cpxlp, rngcount, lpi->rngindarray, lpi->rngarray) );
1515/** deletes rows from SCIP_LP; the new position of a row must not be greater that its old position */
1606 CHECK_ZERO( lpi->messagehdlr, CPXchgbds(lpi->cpxenv, lpi->cpxlp, ncols, ind, lpi->larray, (SCIP_Real*)lb) );
1607 CHECK_ZERO( lpi->messagehdlr, CPXchgbds(lpi->cpxenv, lpi->cpxlp, ncols, ind, lpi->uarray, (SCIP_Real*)ub) );
1658 CHECK_ZERO( lpi->messagehdlr, CPXchgsense(lpi->cpxenv, lpi->cpxlp, nrows, ind, lpi->senarray) );
1671 CHECK_ZERO( lpi->messagehdlr, CPXchgrngval(lpi->cpxenv, lpi->cpxlp, rngcount, lpi->rngindarray, lpi->rngarray) );
1744/** multiplies a row with a non-zero scalar; for negative scalars, the row's sense is switched accordingly */
1769 SCIP_CALL( SCIPlpiGetRows(lpi, row, row, &lhs, &rhs, &nnonz, &beg, lpi->indarray, lpi->valarray) );
1798/** multiplies a column with a non-zero scalar; the objective value is multiplied with the scalar, and the bounds
1826 SCIP_CALL( SCIPlpiGetCols(lpi, col, col, &lb, &ub, &nnonz, &beg, lpi->indarray, lpi->valarray) );
1945 assert((nnonz != NULL && beg != NULL && ind != NULL && val != NULL) || (nnonz == NULL && beg == NULL && ind == NULL && val == NULL));
1995 assert((nnonz != NULL && beg != NULL && ind != NULL && val != NULL) || (nnonz == NULL && beg == NULL && ind == NULL && val == NULL));
2006 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, firstrow, lastrow) );
2007 CHECK_ZERO( lpi->messagehdlr, CPXgetrhs(lpi->cpxenv, lpi->cpxlp, lpi->rhsarray, firstrow, lastrow) );
2017 CHECK_ZERO( lpi->messagehdlr, CPXgetrngval(lpi->cpxenv, lpi->cpxlp, lpi->rngarray, firstrow, lastrow) );
2042 char** colnames, /**< pointers to column names (of size at least lastcol-firstcol+1) or NULL if namestoragesize is zero */
2044 int namestoragesize, /**< size of namestorage (if 0, storageleft returns the storage needed) */
2045 int* storageleft /**< amount of storage left (if < 0 the namestorage was not big enough) or NULL if namestoragesize is zero */
2063 retcode = CPXgetcolname(lpi->cpxenv, lpi->cpxlp, colnames, namestorage, namestoragesize, storageleft, firstcol, lastcol);
2078 char** rownames, /**< pointers to row names (of size at least lastrow-firstrow+1) or NULL if namestoragesize is zero */
2080 int namestoragesize, /**< size of namestorage (if 0, -storageleft returns the storage needed) */
2081 int* storageleft /**< amount of storage left (if < 0 the namestorage was not big enough) or NULL if namestoragesize is zero */
2099 retcode = CPXgetrowname(lpi->cpxenv, lpi->cpxlp, rownames, namestorage, namestoragesize, storageleft, firstrow, lastrow);
2119 assert(CPXgetobjsen(lpi->cpxenv, lpi->cpxlp) == CPX_MIN || CPXgetobjsen(lpi->cpxenv, lpi->cpxlp) == CPX_MAX);
2123 *objsen = (CPXgetobjsen(lpi->cpxenv, lpi->cpxlp) == CPX_MIN) ? SCIP_OBJSEN_MINIMIZE : SCIP_OBJSEN_MAXIMIZE;
2206 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, firstrow, lastrow) );
2207 CHECK_ZERO( lpi->messagehdlr, CPXgetrhs(lpi->cpxenv, lpi->cpxlp, lpi->rhsarray, firstrow, lastrow) );
2217 CHECK_ZERO( lpi->messagehdlr, CPXgetrngval(lpi->cpxenv, lpi->cpxlp, lpi->rngarray, firstrow, lastrow) );
2295 /* due to a bug in CPLEX 12.7.1.0, we need to enable presolving on trivial problems (see comment below) */
2310 CHECK_ZERO( lpi->messagehdlr, CPXsetintparam(lpi->cpxenv, CPX_PARAM_PREIND, presolving) ); /*lint !e644*/
2328 /* CPLEX outputs an error if the status is CPX_STAT_INForUNBD and the iterations are determined */
2329 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, &primalfeasible, &dualfeasible) );
2331 lpi->iterations = CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2339 /* CPLEX 12.7.1.0 primal simplex without presolve (called next in certain situations) does not return on a problem like
2341 * With this workaround, we claim that LPs without rows, which are returned as infeasible-or-unbounded by CPLEX with presolve,
2342 * are in fact unbounded. This assumes that CPLEX with presolve checked that no variable has an empty domain before.
2358 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2359 SCIPdebugMessage("presolver may have solved the problem -> calling CPLEX primal simplex again without presolve\n");
2380 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2381 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2383 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2392 SCIPerrorMessage("CPLEX primal simplex returned CPX_STAT_INForUNBD after presolving was turned off.\n");
2396 /* check whether the solution is basic: if Cplex, e.g., hits a time limit in data setup, this might not be the case,
2453 /* CPLEX outputs an error if the status is CPX_STAT_INForUNBD and the iterations are determined */
2454 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, &primalfeasible, &dualfeasible) );
2456 lpi->iterations = CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2469 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2470 SCIPdebugMessage("presolver may have solved the problem -> calling CPLEX dual simplex again without presolve\n");
2491 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2492 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2494 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2503 SCIPerrorMessage("CPLEX dual simplex returned CPX_STAT_INForUNBD after presolving was turned off\n");
2507 /* check whether the solution is basic: if Cplex, e.g., hits a time limit in data setup, this might not be the case,
2514 /* this fixes the strange behavior of CPLEX, that in case of the objective limit exceedance, it returns the
2516 * (using this "wrong" dual solution can cause column generation algorithms to fail to find an improving column)
2538 SCIPdebugMessage("dual solution %g does not exceed objective limit [%g,%g] (%d iterations) -> calling CPLEX dual simplex again for one iteration\n",
2560 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2582 lpi->iterations += CPXgetphase1cnt(lpi->cpxenv, lpi->cpxlp) + CPXgetitcnt(lpi->cpxenv, lpi->cpxlp);
2585 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2593/** calls barrier or interior point algorithm to solve the LP with crossover to simplex basis */
2628 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2640 SCIPdebugMessage(" -> CPLEX returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2644 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2645 SCIPdebugMessage("CPLEX returned INForUNBD -> calling CPLEX barrier again without presolve\n");
2662 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
2737 *down = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJULIM) : getDblParam(lpi, CPX_PARAM_OBJLLIM);
2743 *down = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJLLIM) : getDblParam(lpi, CPX_PARAM_OBJULIM);
2755 *down = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJULIM) : getDblParam(lpi, CPX_PARAM_OBJLLIM);
2764 *up = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJULIM) : getDblParam(lpi, CPX_PARAM_OBJLLIM);
2770 *up = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJLLIM) : getDblParam(lpi, CPX_PARAM_OBJULIM);
2782 *up = objsen == CPX_MIN ? getDblParam(lpi, CPX_PARAM_OBJLLIM) : getDblParam(lpi, CPX_PARAM_OBJULIM);
2841 SCIPdebugMessage("calling CPLEX strongbranching on fractional variable %d (%d iterations)\n", col, itlim);
2909 SCIPdebugMessage("calling CPLEX strongbranching on %d fractional variables (%d iterations)\n", ncols, itlim);
2968 SCIPdebugMessage("calling CPLEX strongbranching on variable %d with integral value (%d iterations)\n", col, itlim);
2975 SCIP_CALL( lpiStrongbranchIntegral(lpi, col, psol, itlim, down, up, downvalid, upvalid, iter) );
3007 SCIPdebugMessage("calling CPLEX strongbranching on %d variables with integer values (%d iterations)\n", ncols, itlim);
3016 SCIP_CALL( lpiStrongbranchIntegral(lpi, cols[j], psols[j], itlim, &(down[j]), &(up[j]), &(downvalid[j]), &(upvalid[j]), iter) );
3047 * The feasibility information is with respect to the last solving call and it is only relevant if SCIPlpiWasSolved()
3050 * Note that @a primalfeasible and @a dualfeasible should only return true if the solver has proved the respective LP to
3051 * be feasible. Thus, the return values should be equal to the values of SCIPlpiIsPrimalFeasible() and
3052 * SCIPlpiIsDualFeasible(), respectively. Note that if feasibility cannot be proved, they should return false (even if
3072 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, NULL, &pfeas, &dfeas) );
3079/** returns TRUE iff LP is proven to have a primal unbounded ray (but not necessary a primal feasible point);
3090 return (lpi->solstat == CPX_STAT_UNBOUNDED || lpi->solstat == CPX_STAT_OPTIMAL_FACE_UNBOUNDED);
3093/** returns TRUE iff LP is proven to have a primal unbounded ray (but not necessary a primal feasible point),
3124 /* If the solution status of CPLEX is CPX_STAT_UNBOUNDED, it only means, there is an unbounded ray,
3125 * but not necessarily a feasible primal solution. If primalfeasible == FALSE, we cannot conclude,
3128 return ((primalfeasible && (lpi->solstat == CPX_STAT_UNBOUNDED || lpi->solstat == CPX_STAT_INForUNBD))
3129 || lpi->solstat == CPX_STAT_OPTIMAL_FACE_UNBOUNDED || (primalfeasible && lpi->solstat == CPX_STAT_ABORT_PRIM_OBJ_LIM && lpi->method == CPX_ALG_BARRIER));
3148 return (lpi->solstat == CPX_STAT_INFEASIBLE || (lpi->solstat == CPX_STAT_INForUNBD && dualfeasible)
3171/** returns TRUE iff LP is proven to have a dual unbounded ray (but not necessary a dual feasible point);
3184/** returns TRUE iff LP is proven to have a dual unbounded ray (but not necessary a dual feasible point),
3215 return (dualfeasible && ((lpi->solstat == CPX_STAT_INFEASIBLE || lpi->solstat == CPX_STAT_INForUNBD)
3273 * This function should return true if the solution is reliable, i.e., feasible and optimal (or proven
3274 * infeasible/unbounded) with respect to the original problem. The optimality status might be with respect to a scaled
3275 * version of the problem, but the solution might not be feasible to the unscaled original problem; in this case,
3290 /* The following workaround is not needed anymore for SCIP, since it tries to heuristically construct a feasible
3291 * solution or automatically resolves the problem if the status is "unbounded"; see SCIPlpGetUnboundedSol().
3294 /* If the solution status of CPLEX is CPX_STAT_UNBOUNDED, it only means, there is an unbounded ray,
3295 * but not necessarily a feasible primal solution. If primalfeasible == FALSE, we interpret this
3309 /* If the condition number of the basis should be checked, everything above the specified threshold is counted
3324 /* if the kappa could not be computed (e.g., because we do not have a basis), we cannot check the condition */
3342 else if( lpi->solstat == CPX_STAT_ABORT_DUAL_OBJ_LIM || lpi->solstat == CPX_STAT_ABORT_PRIM_OBJ_LIM )
3383/** tries to reset the internal status of the LP solver in order to ignore an instability of the last solving call */
3438 * Before calling this function, the caller must ensure that the LP has been solved to optimality, i.e., that
3459 CHECK_ZERO( lpi->messagehdlr, CPXsolution(lpi->cpxenv, lpi->cpxlp, &dummy, objval, primsol, dualsol, NULL, redcost) );
3464 CHECK_ZERO( lpi->messagehdlr, CPXgetax(lpi->cpxenv, lpi->cpxlp, activity, 0, CPXgetnumrows(lpi->cpxenv, lpi->cpxlp)-1) );
3526 * Such information is usually only available, if also a (maybe not optimal) solution is available.
3527 * The LPI should return SCIP_INVALID for @p quality, if the requested quantity is not available.
3546 CHECK_ZERO( lpi->messagehdlr, CPXsolninfo(lpi->cpxenv, lpi->cpxlp, NULL, &solntype, NULL, NULL) );
3585/** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
3604 /* correct rstat values for "<=" constraints: Here CPX_AT_LOWER bound means that the slack is 0, i.e., the upper bound is tight */
3616 /* because the basis status values are equally defined in SCIP and CPLEX, they don't need to be transformed */
3651 /* because the basis status values are equally defined in SCIP and CPLEX, they don't need to be transformed */
3657 /* Copy rstat to internal structure and correct rstat values for ">=" constraints: Here CPX_AT_LOWER bound means that
3677/** returns the indices of the basic columns and rows; basic column n gives value n, basic row m gives value -1-m */
3692 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3697 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3709 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3710 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3736 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3741 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3748 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3764 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, &rowsense, basicrow, basicrow) );
3781 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3782 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3813 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3818 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3825 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3832 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, 0, nrows - 1) );
3845 if( basicrow >= 0 && basicrow < nrows && (lpi->senarray[basicrow] == 'G' || lpi->senarray[basicrow] == 'R') )
3855 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3856 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3862 const SCIP_Real* binvrow, /**< row in (A_B)^-1 from prior call to SCIPlpiGetBInvRow(), or NULL */
3883 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3888 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3895 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3911 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, &rowsense, basicrow, basicrow) );
3930 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
3931 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
3958 /* this might be turned off if the user as called SCIPlpiClearState() or set SCIP_LPPAR_FROMSCRATCH to TRUE */
3963 if( retval == CPXERR_NO_SOLN || retval == CPXERR_NO_LU_FACTOR || retval == CPXERR_NO_BASIC_SOLN || retval == CPXERR_NO_BASIS )
3970 /* the LPi expects slack variables with coefficient +1; CPLEX adds slack variables with a coefficient -1 for 'G'
3977 CHECK_ZERO( lpi->messagehdlr, CPXgetsense(lpi->cpxenv, lpi->cpxlp, lpi->senarray, 0, nrows - 1) );
3990 if( basicrow >= 0 && basicrow < nrows && (lpi->senarray[basicrow] == 'G' || lpi->senarray[basicrow] == 'R') )
4026 /* if there is no basis information available (e.g. after barrier without crossover), or no state can be saved; if
4043 SCIPdebugMessage("storing CPLEX LPI state in %p (%d cols, %d rows)\n", (void *) *lpistate, ncols, nrows);
4056/** loads LPi state (like basis information) into solver; note that the LP might have been extended with additional
4083 SCIPdebugMessage("loading LPI state %p (%d cols, %d rows) into CPLEX LP with %d cols and %d rows\n",
4232 /* if there is no basis information available (e.g. after barrier without crossover), norms cannot be saved; if
4250 SCIPdebugMessage("storing CPLEX LPI pricing norms in %p (%d rows)\n", (void *) *lpinorms, nrows);
4253 retval = CPXgetdnorms(lpi->cpxenv, lpi->cpxlp, (*lpinorms)->norm, (*lpinorms)->head, &((*lpinorms)->normlen));
4255 /* if CPLEX used the primal simplex in the last optimization call, we do not have dual norms (error 1264) */
4273/** loads LPi pricing norms into solver; note that the LP might have been extended with additional
4303 CHECK_ZERO( lpi->messagehdlr, CPXcopydnorms(lpi->cpxenv, lpi->cpxlp, lpinorms->norm, lpinorms->head, lpinorms->normlen) );
4339 * CPLEX supported FASTMIP in versions up to 12.6.1. FASTMIP fastens the lp solving process but therefor it might happen
4340 * that there will be a loss in precision (because e.g. the optimal basis will not be factorized again).
4388#if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
4389 /* Due to CPLEX bug, we always set the thread count to 1. In order to fulfill an assert in lp.c, we have to
4491#if (CPX_VERSION == 1100 || (CPX_VERSION == 1220 && (CPX_SUBVERSION == 0 || CPX_SUBVERSION == 2)))
4492 /* Due to CPLEX bug, we always set the thread count to 1. In order to fulfill an assert in lp.c, we have to
void SCIPdecodeDualBit(const SCIP_DUALPACKET *inp, int *out, int count)
Definition: bitencode.c:308
void SCIPencodeDualBit(const int *inp, SCIP_DUALPACKET *out, int count)
Definition: bitencode.c:238
packing single and dual bit values
SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs)
Definition: lpi_cpx.c:1630
SCIP_RETCODE SCIPlpiSetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPISTATE *lpistate)
Definition: lpi_cpx.c:4059
SCIP_RETCODE SCIPlpiGetBInvACol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_cpx.c:3934
SCIP_RETCODE SCIPlpiGetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real *dval)
Definition: lpi_cpx.c:4512
SCIP_RETCODE SCIPlpiChgObjsen(SCIP_LPI *lpi, SCIP_OBJSEN objsen)
Definition: lpi_cpx.c:1699
SCIP_Bool SCIPlpiIsInfinity(SCIP_LPI *lpi, SCIP_Real val)
Definition: lpi_cpx.c:4668
SCIP_RETCODE SCIPlpiGetBase(SCIP_LPI *lpi, int *cstat, int *rstat)
Definition: lpi_cpx.c:3586
SCIP_RETCODE SCIPlpiReadState(SCIP_LPI *lpi, const char *fname)
Definition: lpi_cpx.c:4165
SCIP_RETCODE SCIPlpiAddRows(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_cpx.c:1420
SCIP_RETCODE SCIPlpiGetPrimalRay(SCIP_LPI *lpi, SCIP_Real *ray)
Definition: lpi_cpx.c:3471
SCIP_RETCODE SCIPlpiGetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int *ival)
Definition: lpi_cpx.c:4342
SCIP_RETCODE SCIPlpiWriteLP(SCIP_LPI *lpi, const char *fname)
Definition: lpi_cpx.c:4715
SCIP_RETCODE SCIPlpiSetIntegralityInformation(SCIP_LPI *lpi, int ncols, int *intInfo)
Definition: lpi_cpx.c:1060
SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval)
Definition: lpi_cpx.c:4558
SCIP_RETCODE SCIPlpiStrongbranchFrac(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_cpx.c:2817
SCIP_RETCODE SCIPlpiSetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPINORMS *lpinorms)
Definition: lpi_cpx.c:4276
SCIP_RETCODE SCIPlpiStrongbranchInt(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_cpx.c:2947
SCIP_RETCODE SCIPlpiGetBounds(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: lpi_cpx.c:2152
SCIP_RETCODE SCIPlpiGetDualfarkas(SCIP_LPI *lpi, SCIP_Real *dualfarkas)
Definition: lpi_cpx.c:3491
SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval)
Definition: lpi_cpx.c:3407
SCIP_RETCODE SCIPlpiScaleCol(SCIP_LPI *lpi, int col, SCIP_Real scaleval)
Definition: lpi_cpx.c:1801
SCIP_RETCODE SCIPlpiStartStrongbranch(SCIP_LPI *lpi)
Definition: lpi_cpx.c:2791
SCIP_RETCODE SCIPlpiGetSolFeasibility(SCIP_LPI *lpi, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lpi_cpx.c:3055
SCIP_RETCODE SCIPlpiFreeNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_cpx.c:4309
SCIP_RETCODE SCIPlpiChgBounds(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *lb, const SCIP_Real *ub)
Definition: lpi_cpx.c:1567
SCIP_RETCODE SCIPlpiIgnoreInstability(SCIP_LPI *lpi, SCIP_Bool *success)
Definition: lpi_cpx.c:3384
SCIP_RETCODE SCIPlpiWriteState(SCIP_LPI *lpi, const char *fname)
Definition: lpi_cpx.c:4183
SCIP_RETCODE SCIPlpiStrongbranchesFrac(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_cpx.c:2881
SCIP_RETCODE SCIPlpiGetCoef(SCIP_LPI *lpi, int row, int col, SCIP_Real *val)
Definition: lpi_cpx.c:2227
SCIP_RETCODE SCIPlpiGetRealSolQuality(SCIP_LPI *lpi, SCIP_LPSOLQUALITY qualityindicator, SCIP_Real *quality)
Definition: lpi_cpx.c:3529
SCIP_RETCODE SCIPlpiGetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_cpx.c:4216
SCIP_Bool SCIPlpiHasStateBasis(SCIP_LPI *lpi, SCIP_LPISTATE *lpistate)
Definition: lpi_cpx.c:4155
SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival)
Definition: lpi_cpx.c:4405
SCIP_RETCODE SCIPlpiSetBase(SCIP_LPI *lpi, const int *cstat, const int *rstat)
Definition: lpi_cpx.c:3626
SCIP_RETCODE SCIPlpiGetBInvRow(SCIP_LPI *lpi, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_cpx.c:3713
SCIP_RETCODE SCIPlpiDelRows(SCIP_LPI *lpi, int firstrow, int lastrow)
Definition: lpi_cpx.c:1489
SCIP_RETCODE SCIPlpiGetCols(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lb, SCIP_Real *ub, int *nnonz, int *beg, int *ind, SCIP_Real *val)
Definition: lpi_cpx.c:1929
SCIP_RETCODE SCIPlpiGetBInvCol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_cpx.c:3785
SCIP_RETCODE SCIPlpiGetColNames(SCIP_LPI *lpi, int firstcol, int lastcol, char **colnames, char *namestorage, int namestoragesize, int *storageleft)
Definition: lpi_cpx.c:2038
static SCIP_RETCODE lpiStrongbranchIntegral(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_cpx.c:2685
SCIP_RETCODE SCIPlpiGetBInvARow(SCIP_LPI *lpi, int r, const SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_cpx.c:3859
SCIP_RETCODE SCIPlpiGetRows(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhs, SCIP_Real *rhs, int *nnonz, int *beg, int *ind, SCIP_Real *val)
Definition: lpi_cpx.c:1975
SCIP_RETCODE SCIPlpiSolveBarrier(SCIP_LPI *lpi, SCIP_Bool crossover)
Definition: lpi_cpx.c:2594
SCIP_RETCODE SCIPlpiGetRowNames(SCIP_LPI *lpi, int firstrow, int lastrow, char **rownames, char *namestorage, int namestoragesize, int *storageleft)
Definition: lpi_cpx.c:2074
SCIP_RETCODE SCIPlpiGetSides(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhss, SCIP_Real *rhss)
Definition: lpi_cpx.c:2183
SCIP_RETCODE SCIPlpiStrongbranchesInt(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_cpx.c:2981
SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost)
Definition: lpi_cpx.c:3441
SCIP_RETCODE SCIPlpiGetObj(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *vals)
Definition: lpi_cpx.c:2129
SCIP_RETCODE SCIPlpiFreeState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_cpx.c:4136
SCIP_Bool SCIPlpiIsPrimalInfeasible(SCIP_LPI *lpi)
Definition: lpi_cpx.c:3133
SCIP_RETCODE SCIPlpiAddCols(SCIP_LPI *lpi, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_cpx.c:1316
SCIP_RETCODE SCIPlpiLoadColLP(SCIP_LPI *lpi, SCIP_OBJSEN objsen, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_cpx.c:1242
SCIP_RETCODE SCIPlpiGetIterations(SCIP_LPI *lpi, int *iterations)
Definition: lpi_cpx.c:3511
SCIP_RETCODE SCIPlpiGetBasisInd(SCIP_LPI *lpi, int *bind)
Definition: lpi_cpx.c:3678
SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen)
Definition: lpi_cpx.c:1111
SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *obj)
Definition: lpi_cpx.c:1722
SCIP_RETCODE SCIPlpiGetObjsen(SCIP_LPI *lpi, SCIP_OBJSEN *objsen)
Definition: lpi_cpx.c:2110
SCIP_RETCODE SCIPlpiInterrupt(SCIP_LPI *lpi, SCIP_Bool interrupt)
Definition: lpi_cpx.c:4636
SCIP_RETCODE SCIPlpiDelCols(SCIP_LPI *lpi, int firstcol, int lastcol)
Definition: lpi_cpx.c:1371
SCIP_RETCODE SCIPlpiScaleRow(SCIP_LPI *lpi, int row, SCIP_Real scaleval)
Definition: lpi_cpx.c:1745
SCIP_RETCODE SCIPlpiGetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_cpx.c:4011
SCIP_RETCODE SCIPlpiChgCoef(SCIP_LPI *lpi, int row, int col, SCIP_Real newval)
Definition: lpi_cpx.c:1678
interface methods for specific LP solvers
static void reconvertSides(SCIP_LPI *lpi, int nrows, SCIP_Real *lhs, SCIP_Real *rhs)
Definition: lpi_cpx.c:957
static void lpistatePack(SCIP_LPISTATE *lpistate, const int *cstat, const int *rstat)
Definition: lpi_cpx.c:408
static void lpistateUnpack(const SCIP_LPISTATE *lpistate, int *cstat, int *rstat)
Definition: lpi_cpx.c:424
static SCIP_RETCODE setParameterValues(SCIP_LPI *const lpi, SCIP_CPXPARAM *const cpxparam)
Definition: lpi_cpx.c:539
static void convertSides(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, int indoffset, int *rngcount)
Definition: lpi_cpx.c:740
static SCIP_RETCODE checkParameterValues(SCIP_LPI *const lpi)
Definition: lpi_cpx.c:509
static void setDblParam(SCIP_LPI *lpi, int const param, double parval)
Definition: lpi_cpx.c:679
static SCIP_RETCODE ensureBoundchgMem(SCIP_LPI *lpi, int num)
Definition: lpi_cpx.c:212
static void lpistateFree(SCIP_LPISTATE **lpistate, BMS_BLKMEM *blkmem)
Definition: lpi_cpx.c:461
static void setIntParam(SCIP_LPI *lpi, int const param, int const parval)
Definition: lpi_cpx.c:654
static SCIP_RETCODE getParameterValues(SCIP_LPI *lpi, SCIP_CPXPARAM *cpxparam)
Definition: lpi_cpx.c:483
static void reconvertBothSides(SCIP_LPI *lpi, int nrows, SCIP_Real *lhs, SCIP_Real *rhs)
Definition: lpi_cpx.c:804
static SCIP_RETCODE ensureSidechgMem(SCIP_LPI *lpi, int num)
Definition: lpi_cpx.c:241
static void copyParameterValues(SCIP_CPXPARAM *dest, SCIP_CPXPARAM *const source)
Definition: lpi_cpx.c:586
static void reconvertLhs(SCIP_LPI *lpi, int nrows, SCIP_Real *lhs)
Definition: lpi_cpx.c:861
static void reconvertRhs(SCIP_LPI *lpi, int nrows, SCIP_Real *rhs)
Definition: lpi_cpx.c:909
static SCIP_RETCODE lpistateCreate(SCIP_LPISTATE **lpistate, BMS_BLKMEM *blkmem, int ncols, int nrows)
Definition: lpi_cpx.c:440
void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:427
public methods for message output
Definition: lpi_cpx.c:136
Definition: lpi_cpx.c:199
Definition: lpi_clp.cpp:133
Definition: lpi_clp.cpp:105
Definition: struct_message.h:46