Scippy

SCIP

Solving Constraint Integer Programs

cons_nonlinear.h
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file cons_nonlinear.h
26 * @ingroup CONSHDLRS
27 * @brief constraint handler for nonlinear constraints specified by algebraic expressions
28 * @author Ksenia Bestuzheva
29 * @author Benjamin Mueller
30 * @author Felipe Serrano
31 * @author Stefan Vigerske
32 *
33 * For additional documentation on this constraint handler, see also the SCIP 8 release report.
34 */
35
36/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
37
38#ifndef __SCIP_CONS_NONLINEAR_H__
39#define __SCIP_CONS_NONLINEAR_H__
40
41
42#include "scip/scip.h"
43#include "scip/type_nlhdlr.h"
44
45#ifdef __cplusplus
46extern "C" {
47#endif
48
49/**@addtogroup CONSHDLRS
50 * @{
51 *
52 * @name Nonlinear Constraints
53 * @{
54 */
55
56/** linear auxiliary expression of the form xy {≤,≥,=} coefs[0]w + coefs[1]x + coefs[2]y + cst */
58{
59 SCIP_Real coefs[3]; /**< coefficients in the auxiliary expression */
60 SCIP_Real cst; /**< constant */
61 SCIP_VAR* auxvar; /**< auxiliary variable w in xy {&le;,&ge;,=} auxexpr(w, x, y) */
62 SCIP_Bool underestimate; /**< whether the auxexpr underestimates the product */
63 SCIP_Bool overestimate; /**< whether the auxexpr overestimates the product */
64};
66
67/** bilinear term structure
68 *
69 * This can represent a product which
70 * - explicitly exists in the problem and is under- and/or overestimated by a single auxiliary variable
71 * stored as `var` in the union `aux` (case `nauxexprs` = 0) or
72 * - is involved in bilinear relations implicitly given by linear constraints with binary variables, and
73 * is under- and/or overestimated by linear expression(s) stored as `exprs` in the union `aux` (case `nauxexprs` > 0).
74 *
75 * An explicitly existing product can also be involved in implicit relations, then it will be stored as in
76 * the second case.
77 */
79{
80 SCIP_VAR* x; /**< first variable */
81 SCIP_VAR* y; /**< second variable */
82 union
83 {
84 SCIP_CONSNONLINEAR_AUXEXPR** exprs; /**< auxiliary expressions for the implicit product of x and y */
85 SCIP_VAR* var; /**< auxiliary variable for the explicit product of x and y */
86 } aux;
87 int nauxexprs; /**< number of aux.exprs (0 for products without implicit relations) */
88 int auxexprssize; /**< size of the aux.exprs array */
89 int nlockspos; /**< number of positive expression locks */
90 int nlocksneg; /**< number of negative expression locks */
91 SCIP_Bool existing; /**< does the product exist explicitly in the problem? */
92};
93typedef struct SCIP_ConsNonlinear_BilinTerm SCIP_CONSNONLINEAR_BILINTERM; /**< bilinear term structure */
94
95/** evaluation callback for (vertex-polyhedral) functions used as input for facet computation of its envelopes
96 *
97 * \param[in] args the point to be evaluated
98 * \param[in] nargs the number of arguments of the function (length of array `args`)
99 * \param[in] funcdata user-data of function evaluation callback
100 * \return value of function in point given by `args` or SCIP_INVALID if could not be evaluated
101 */
102#define SCIP_DECL_VERTEXPOLYFUN(f) SCIP_Real f (SCIP_Real* args, int nargs, void* funcdata)
103
104/** maximum dimension of vertex-polyhedral function for which we can try to compute a facet of its convex or concave envelope */
105#define SCIP_MAXVERTEXPOLYDIM 14
106
107/** upgrading method for nonlinear constraints into more specific constraints
108 *
109 * The method might upgrade a nonlinear constraint into a set of upgrade constraints.
110 * The caller provided an array `upgdconss` of size `upgdconsssize` to store upgrade constraints.
111 * If an upgrade is not possible, set `*nupgdconss` to zero.
112 * If more than `upgdconsssize` many constraints shall replace `cons`, the function
113 * should return the required number as negated value in `*nupgdconss`,
114 * e.g., if `cons` should be replaced by 3 constraints, the function should set
115 * `*nupgdconss` to -3 and return with SCIP_OKAY.
116 *
117 * \param[in] scip SCIP main data structure
118 * \param[in] cons the nonlinear constraint to upgrade
119 * \param[in] nvarexprs total number of variable expressions in the nonlinear constraint
120 * \param[out] nupgdconss pointer to store number of constraints that replace this constraint
121 * \param[out] upgdconss array to store constraints that replace this constraint
122 * \param[in] upgdconsssize length of the provided `upgdconss` array
123 */
124#define SCIP_DECL_NONLINCONSUPGD(x) SCIP_RETCODE x (SCIP* scip, SCIP_CONS* cons, int nvarexprs, \
125 int* nupgdconss, SCIP_CONS** upgdconss, int upgdconsssize)
126
127/** @} */
128/** @} */
129
130/** creates the handler for nonlinear constraints and includes it in SCIP
131 *
132 * @ingroup ConshdlrIncludes
133 */
134SCIP_EXPORT
136 SCIP* scip /**< SCIP data structure */
137 );
138
139/**@addtogroup CONSHDLRS
140 *
141 * @{
142 *
143 * @name Nonlinear Constraints
144 *
145 * @{
146 */
147
148/* Nonlinear Constraint Handler Methods */
149
150/** includes a nonlinear constraint upgrade method into the nonlinear constraint handler */
151SCIP_EXPORT
153 SCIP* scip, /**< SCIP data structure */
154 SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), /**< method to call for upgrading nonlinear constraint */
155 int priority, /**< priority of upgrading method */
156 SCIP_Bool active, /**< should the upgrading method by active by default? */
157 const char* conshdlrname /**< name of the constraint handler */
158 );
159
160/** creates and captures a nonlinear constraint
161 *
162 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
163 */
164SCIP_EXPORT
166 SCIP* scip, /**< SCIP data structure */
167 SCIP_CONS** cons, /**< pointer to hold the created constraint */
168 const char* name, /**< name of constraint */
169 SCIP_EXPR* expr, /**< expression of constraint (must not be NULL) */
170 SCIP_Real lhs, /**< left hand side of constraint */
171 SCIP_Real rhs, /**< right hand side of constraint */
172 SCIP_Bool initial, /**< should the LP relaxation of constraint be in the initial LP?
173 * Usually set to TRUE. Set to FALSE for 'lazy constraints'. */
174 SCIP_Bool separate, /**< should the constraint be separated during LP processing?
175 * Usually set to TRUE. */
176 SCIP_Bool enforce, /**< should the constraint be enforced during node processing?
177 * TRUE for model constraints, FALSE for additional, redundant constraints. */
178 SCIP_Bool check, /**< should the constraint be checked for feasibility?
179 * TRUE for model constraints, FALSE for additional, redundant constraints. */
180 SCIP_Bool propagate, /**< should the constraint be propagated during node processing?
181 * Usually set to TRUE. */
182 SCIP_Bool local, /**< is constraint only valid locally?
183 * Usually set to FALSE. Has to be set to TRUE, e.g., for branching constraints. */
184 SCIP_Bool modifiable, /**< is constraint modifiable (subject to column generation)?
185 * Usually set to FALSE. In column generation applications, set to TRUE if pricing
186 * adds coefficients to this constraint. */
187 SCIP_Bool dynamic, /**< is constraint subject to aging?
188 * Usually set to FALSE. Set to TRUE for own cuts which
189 * are separated as constraints. */
190 SCIP_Bool removable /**< should the relaxation be removed from the LP due to aging or cleanup?
191 * Usually set to FALSE. Set to TRUE for 'lazy constraints' and 'user cuts'. */
192 );
193
194/** creates and captures a nonlinear constraint with all its constraint flags set to their default values
195 *
196 * All flags can be set via SCIPconsSetFLAGNAME-methods.
197 *
198 * @see SCIPcreateConsNonlinear() for information about the basic constraint flag configuration.
199 *
200 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
201 */
202SCIP_EXPORT
204 SCIP* scip, /**< SCIP data structure */
205 SCIP_CONS** cons, /**< pointer to hold the created constraint */
206 const char* name, /**< name of constraint */
207 SCIP_EXPR* expr, /**< expression of constraint (must not be NULL) */
208 SCIP_Real lhs, /**< left hand side of constraint */
209 SCIP_Real rhs /**< right hand side of constraint */
210 );
211
212/** creates and captures a quadratic nonlinear constraint
213 *
214 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
215 */
216SCIP_EXPORT
218 SCIP* scip, /**< SCIP data structure */
219 SCIP_CONS** cons, /**< pointer to hold the created constraint */
220 const char* name, /**< name of constraint */
221 int nlinvars, /**< number of linear terms */
222 SCIP_VAR** linvars, /**< array with variables in linear part */
223 SCIP_Real* lincoefs, /**< array with coefficients of variables in linear part */
224 int nquadterms, /**< number of quadratic terms */
225 SCIP_VAR** quadvars1, /**< array with first variables in quadratic terms */
226 SCIP_VAR** quadvars2, /**< array with second variables in quadratic terms */
227 SCIP_Real* quadcoefs, /**< array with coefficients of quadratic terms */
228 SCIP_Real lhs, /**< left hand side of quadratic equation */
229 SCIP_Real rhs, /**< right hand side of quadratic equation */
230 SCIP_Bool initial, /**< should the LP relaxation of constraint be in the initial LP?
231 * Usually set to TRUE. Set to FALSE for 'lazy constraints'. */
232 SCIP_Bool separate, /**< should the constraint be separated during LP processing?
233 * Usually set to TRUE. */
234 SCIP_Bool enforce, /**< should the constraint be enforced during node processing?
235 * TRUE for model constraints, FALSE for additional, redundant constraints. */
236 SCIP_Bool check, /**< should the constraint be checked for feasibility?
237 * TRUE for model constraints, FALSE for additional, redundant constraints. */
238 SCIP_Bool propagate, /**< should the constraint be propagated during node processing?
239 * Usually set to TRUE. */
240 SCIP_Bool local, /**< is constraint only valid locally?
241 * Usually set to FALSE. Has to be set to TRUE, e.g., for branching constraints. */
242 SCIP_Bool modifiable, /**< is constraint modifiable (subject to column generation)?
243 * Usually set to FALSE. In column generation applications, set to TRUE if pricing
244 * adds coefficients to this constraint. */
245 SCIP_Bool dynamic, /**< is constraint subject to aging?
246 * Usually set to FALSE. Set to TRUE for own cuts which
247 * are separated as constraints. */
248 SCIP_Bool removable /**< should the relaxation be removed from the LP due to aging or cleanup?
249 * Usually set to FALSE. Set to TRUE for 'lazy constraints' and 'user cuts'. */
250 );
251
252/** creates and captures a quadratic nonlinear constraint with all its constraint flags set to their default values
253 *
254 * All flags can be set via SCIPconsSetFLAGNAME-methods.
255 *
256 * @see SCIPcreateConsQuadraticNonlinear() for information about the basic constraint flag configuration.
257 *
258 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
259 */
260SCIP_EXPORT
262 SCIP* scip, /**< SCIP data structure */
263 SCIP_CONS** cons, /**< pointer to hold the created constraint */
264 const char* name, /**< name of constraint */
265 int nlinvars, /**< number of linear terms */
266 SCIP_VAR** linvars, /**< array with variables in linear part */
267 SCIP_Real* lincoefs, /**< array with coefficients of variables in linear part */
268 int nquadterms, /**< number of quadratic terms */
269 SCIP_VAR** quadvars1, /**< array with first variables in quadratic terms */
270 SCIP_VAR** quadvars2, /**< array with second variables in quadratic terms */
271 SCIP_Real* quadcoefs, /**< array with coefficients of quadratic terms */
272 SCIP_Real lhs, /**< left hand side of quadratic equation */
273 SCIP_Real rhs /**< right hand side of quadratic equation */
274 );
275
276/** creates and captures a nonlinear constraint that is a second-order cone constraint with all its constraint flags set to their default values
277 *
278 * \f$\sqrt{\gamma + \sum_{i=1}^{n} (\alpha_i\, (x_i + \beta_i))^2} \leq \alpha_{n+1}\, (x_{n+1}+\beta_{n+1})\f$
279 *
280 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
281 */
282SCIP_EXPORT
284 SCIP* scip, /**< SCIP data structure */
285 SCIP_CONS** cons, /**< pointer to hold the created constraint */
286 const char* name, /**< name of constraint */
287 int nvars, /**< number of variables on left hand side of constraint (n) */
288 SCIP_VAR** vars, /**< array with variables on left hand side (x_i) */
289 SCIP_Real* coefs, /**< array with coefficients of left hand side variables (alpha_i), or NULL if all 1.0 */
290 SCIP_Real* offsets, /**< array with offsets of variables (beta_i), or NULL if all 0.0 */
291 SCIP_Real constant, /**< constant on left hand side (gamma) */
292 SCIP_VAR* rhsvar, /**< variable on right hand side of constraint (x_{n+1}) */
293 SCIP_Real rhscoeff, /**< coefficient of variable on right hand side (alpha_{n+1}) */
294 SCIP_Real rhsoffset /**< offset of variable on right hand side (beta_{n+1}) */
295 );
296
297/** creates and captures a signpower nonlinear constraint with all its constraint flags set to their default values
298 *
299 * \f$\textrm{lhs} \leq \textrm{sign}(x+a) |x+a|^n + c z \leq \textrm{rhs}\f$
300 *
301 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
302 */
303SCIP_EXPORT
305 SCIP* scip, /**< SCIP data structure */
306 SCIP_CONS** cons, /**< pointer to hold the created constraint */
307 const char* name, /**< name of constraint */
308 SCIP_VAR* x, /**< nonlinear variable x in constraint */
309 SCIP_VAR* z, /**< linear variable z in constraint */
310 SCIP_Real exponent, /**< exponent n of |x+offset|^n term in constraint */
311 SCIP_Real xoffset, /**< offset in |x+offset|^n term in constraint */
312 SCIP_Real zcoef, /**< coefficient of z in constraint */
313 SCIP_Real lhs, /**< left hand side of constraint */
314 SCIP_Real rhs /**< right hand side of constraint */
315 );
316
317/** gets tag indicating current local variable bounds */
318SCIP_EXPORT
320 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
321 );
322
323/** gets the `curboundstag` from the last time where variable bounds were relaxed */
324SCIP_EXPORT
326 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
327 );
328
329/** increments `curboundstag` and resets `lastboundrelax` in constraint handler data
330 *
331 * @attention This method is not intended for normal use.
332 * These tags are maintained by the event handler for variable bound change events.
333 * This method is used by some unittests.
334 */
335SCIP_EXPORT
337 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
338 SCIP_Bool boundrelax /**< indicates whether a bound was relaxed, i.e., lastboundrelax should be set too */
339 );
340
341/** returns the hashmap that is internally used to map variables to their corresponding variable expressions */
342SCIP_EXPORT
344 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
345 );
346
347/** processes a rowprep for cut addition and maybe report branchscores */
348SCIP_EXPORT
350 SCIP* scip, /**< SCIP data structure */
351 SCIP_NLHDLR* nlhdlr, /**< nonlinear handler which provided the estimator */
352 SCIP_CONS* cons, /**< nonlinear constraint */
353 SCIP_EXPR* expr, /**< expression */
354 SCIP_ROWPREP* rowprep, /**< cut to be added */
355 SCIP_Bool overestimate, /**< whether the expression needs to be over- or underestimated */
356 SCIP_VAR* auxvar, /**< auxiliary variable */
357 SCIP_Real auxvalue, /**< current value of expression w.r.t. auxiliary variables as obtained from EVALAUX */
358 SCIP_Bool allowweakcuts, /**< whether we should only look for "strong" cuts, or anything that separates is fine */
359 SCIP_Bool branchscoresuccess, /**< whether the estimator generation generated branching scores */
360 SCIP_Bool inenforcement, /**< whether we are in enforcement, or only in separation */
361 SCIP_SOL* sol, /**< solution to be separated (NULL for the LP solution) */
362 SCIP_RESULT* result /**< pointer to store the result */
363 );
364
365/** returns whether all nonlinear constraints are assumed to be convex */
366SCIP_EXPORT
368 SCIP_CONSHDLR* conshdlr
369 );
370
371/** collects all bilinear terms for a given set of constraints
372 *
373 * @attention This method should only be used for unit tests that depend on SCIPgetBilinTermsNonlinear(),
374 * SCIPgetBilinTermNonlinear() or SCIPgetBilinTermIdxNonlinear().
375 */
376SCIP_EXPORT
378 SCIP* scip, /**< SCIP data structure */
379 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
380 SCIP_CONS** conss, /**< nonlinear constraints */
381 int nconss /**< total number of nonlinear constraints */
382 );
383
384/** returns the total number of bilinear terms that are contained in all nonlinear constraints
385 *
386 * @note This method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
387 */
388SCIP_EXPORT
390 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
391 );
392
393/** returns all bilinear terms that are contained in all nonlinear constraints
394 *
395 * @note This method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
396 * @note The value of the auxiliary variable of a bilinear term might be NULL, which indicates that the term does not have an auxiliary variable.
397 */
398SCIP_EXPORT
400 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
401 );
402
403/** returns the index of the bilinear term representing the product of the two given variables
404 *
405 * @note The method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
406 * @return The method returns -1 if the variables do not appear bilinearly.
407 */
408SCIP_EXPORT
410 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
411 SCIP_VAR* x, /**< first variable */
412 SCIP_VAR* y /**< second variable */
413 );
414
415/** returns the bilinear term that represents the product of two given variables
416 *
417 * @note The method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
418 * @return The method returns NULL if the variables do not appear bilinearly.
419 */
420SCIP_EXPORT
422 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
423 SCIP_VAR* x, /**< first variable */
424 SCIP_VAR* y /**< second variable */
425 );
426
427/** evaluates an auxiliary expression for a bilinear term */
428SCIP_EXPORT
430 SCIP* scip, /**< SCIP data structure */
431 SCIP_VAR* x, /**< first variable of the bilinear term */
432 SCIP_VAR* y, /**< second variable of the bilinear term */
433 SCIP_CONSNONLINEAR_AUXEXPR* auxexpr, /**< auxiliary expression */
434 SCIP_SOL* sol /**< solution at which to evaluate (can be NULL) */
435 );
436
437/** stores the variables of a bilinear term in the data of the constraint handler */
438SCIP_EXPORT
440 SCIP* scip, /**< SCIP data structure */
441 SCIP_CONSHDLR* conshdlr, /**< constraint handler */
442 SCIP_VAR* x, /**< first variable */
443 SCIP_VAR* y, /**< second variable */
444 SCIP_VAR* auxvar, /**< auxiliary variable (might be NULL) */
445 int nlockspos, /**< number of positive expression locks */
446 int nlocksneg /**< number of negative expression locks */
447 );
448
449/** stores the variables of a bilinear term in the data of the constraint handler */
450SCIP_EXPORT
452 SCIP* scip, /**< SCIP data structure */
453 SCIP_CONSHDLR* conshdlr, /**< constraint handler */
454 SCIP_VAR* x, /**< first variable */
455 SCIP_VAR* y, /**< second variable */
456 SCIP_VAR* auxvar, /**< auxiliary variable (might be NULL) */
457 SCIP_Real coefx, /**< coefficient of x in the auxiliary expression */
458 SCIP_Real coefy, /**< coefficient of y in the auxiliary expression */
459 SCIP_Real coefaux, /**< coefficient of auxvar in the auxiliary expression */
460 SCIP_Real cst, /**< constant of the auxiliary expression */
461 SCIP_Bool overestimate /**< whether the auxiliary expression overestimates the bilinear product */
462 );
463
464/** computes a facet of the convex or concave envelope of a vertex polyhedral function
465 *
466 * If \f$ f(x) \f$ is vertex-polyhedral, then \f$ g \f$ is a convex underestimator if and only if
467 * \f$ g(v^i) \leq f(v^i), \forall i \f$, where \f$ \{ v^i \}_{i = 1}^{2^n} \subseteq \mathbb R^n \f$ are the vertices
468 * of the domain of \f$ x \f$, \f$ [\ell,u] \f$. Hence, we can compute a linear underestimator by solving the following
469 * LP (we don't necessarily get a facet of the convex envelope, see below):
470 *
471 * \f{align*}{
472 * \max \, & \alpha^T x^* + \beta \\
473 * s.t. \; & \alpha^T v^i + \beta \le f(v^i), \, \forall i = 1, \ldots, 2^n
474 * \f}
475 *
476 * In principle, one would need to update the LP whenever the domain changes. However, \f$ [\ell,u] = T([0, 1]^n) \f$,
477 * where \f$ T \f$ is an affine linear invertible transformation given by \f$ T(y)_i = (u_i - \ell_i) y_i + \ell_i \f$.
478 * Working with the change of variables \f$ x = T(y) \f$ allows us to keep the constraints of the LP, even if the domain
479 * changes. Indeed, after the change of variables, the problem is: find an affine underestimator \f$ g \f$ such that \f$
480 * g(T(y)) \le f(T(y)) \f$, for all \f$ y \in [0, 1]^n \f$. Now \f$ f(T(y)) \f$ is componentwise affine, but still
481 * satisfies that \f$ g \f$ is a valid underestimator if and only if \f$ g(T(u)) \leq f(T(u)), \forall u \in \{0, 1\}^n
482 * \f$. So we now look for \f$ \bar g(y) := g(T(y)) = g(((u_i - \ell_i) y_i + \ell_i)_i) = \bar \alpha^T y + \bar \beta
483 * \f$, where \f$ \bar \alpha_i = (u_i - \ell_i) \alpha_i \f$ and \f$ \bar \beta = \sum_i \alpha_i \ell_i + \beta \f$. So
484 * we find \f$ \bar g \f$ by solving the LP:
485 *
486 * \f{align*}{
487 * \max \, & \bar \alpha^T T^{-1}(x^*) + \bar \beta \\
488 * s.t. \; & \bar \alpha^T u + \bar \beta \le f(T(u)), \, \forall u \in \{0, 1\}^n
489 * \f}
490 *
491 * and recover \f$ g \f$ by calculating \f$ \bar \alpha_i = (u_i - \ell_i) \alpha_i, \bar \beta = \sum_i \alpha_i \ell_i +
492 * \beta \f$. Notice that \f$ f(T(u^i)) = f(v^i) \f$ so the right hand side doesn't change after the change of variables.
493 *
494 * Furthermore, the LP has more constraints than variables, so we solve its dual:
495 * \f{align*}{
496 * \min \, & \sum_i \lambda_i f(v^i) \\
497 * s.t. \; & \sum_i \lambda_i u^i = T^{-1}(x^*) \\
498 * & \sum_i \lambda_i = 1 \\
499 * & \forall i, \, \lambda_i \geq 0
500 * \f}
501 *
502 * In case we look for an overestimate, we do exactly the same, but have to maximize in the dual LP instead
503 * of minimize.
504 *
505 * #### Technical and implementation details
506 * -# \f$ U \f$ has exponentially many variables, so we only apply this separator for \f$n\f$ &le; \ref SCIP_MAXVERTEXPOLYDIM.
507 * -# If the bounds are not finite, there is no underestimator. Also, \f$ T^{-1}(x^*) \f$ must be in the domain,
508 * otherwise the dual is infeasible.
509 * -# After a facet is computed, we check whether it is a valid facet (i.e. we check \f$ \alpha^T v + \beta \le f(v) \f$
510 * for every vertex \f$ v \f$). If we find a violation of at most ADJUSTFACETFACTOR * SCIPlpfeastol(), then we weaken \f$
511 * \beta \f$ by this amount, otherwise, we discard the cut.
512 * -# If a variable is fixed within tolerances, we replace it with its value and compute the facet of the remaining
513 * expression. Note that since we are checking the cut for validity, this will never produce wrong result.
514 * -# If \f$ x^* \f$ is in the boundary of the domain, then the LP has infinitely many solutions, some of which might
515 * have very bad numerical properties. For this reason, we perturb \f$ x^* \f$ to be in the interior of the region.
516 * Furthermore, for some interior points, there might also be infinitely many solutions (e.g. for \f$ x y \f$ in \f$
517 * [0,1]^2 \f$ any point \f$ (x^*, y^*) \f$ such that \f$ y^* = 1 - x^* \f$ has infinitely many solutions). For this
518 * reason, we perturb any given \f$ x^* \f$. The idea is to try to get a facet of the convex/concave envelope. This only
519 * happens when the solution has \f$ n + 1 \f$ non zero \f$ \lambda \f$'s (i.e. the primal has a unique solution).
520 * -# We need to compute \f$ f(v^i) \f$ for every vertex of \f$ [\ell,u] \f$. A vertex is encoded by a number between 0
521 * and \f$ 2^n - 1 \f$, via its binary representation (0 bit is lower bound, 1 bit is upper bound), so we can compute
522 * all these values by iterating between 0 and \f$ 2^n - 1 \f$.
523 * -# To check that the computed cut is valid we do the following: we use a gray code to loop over the vertices
524 * of the box domain w.r.t. unfixed variables in order to evaluate the underestimator. To ensure the validity of the
525 * underestimator, we check whether \f$ \alpha v^i + \beta \le f(v^i) \f$ for every vertex \f$ v^i \f$ and adjust
526 * \f$ \beta \f$ if the maximal violation is small.
527 *
528 * @todo the solution is a facet if all variables of the primal have positive reduced costs (i.e. the solution is
529 * unique). In the dual, this means that there are \f$ n + 1 \f$ variables with positive value. Can we use this or some
530 * other information to handle any of both cases (point in the boundary or point in the intersection of polytopes
531 * defining different pieces of the convex envelope)? In the case where the point is in the boundary, can we use that
532 * information to maybe solve another to find a facet? How do the polytopes defining the pieces where the convex
533 * envelope is linear looks like, i.e, given a point in the interior of a facet of the domain, does the midpoint of the
534 * segment joining \f$ x^* \f$ with the center of the domain, always belongs to the interior of one of those polytopes?
535 */
536SCIP_EXPORT
538 SCIP* scip, /**< SCIP data structure */
539 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
540 SCIP_Bool overestimate, /**< whether to compute facet of concave (TRUE) or convex (FALSE) envelope */
541 SCIP_DECL_VERTEXPOLYFUN((*function)), /**< pointer to vertex polyhedral function */
542 void* fundata, /**< data for function evaluation (can be NULL) */
543 SCIP_Real* xstar, /**< point to be separated */
544 SCIP_Real* box, /**< box where to compute facet: should be lb_1, ub_1, lb_2, ub_2... */
545 int nallvars, /**< half of the length of box */
546 SCIP_Real targetvalue, /**< target value: no need to compute facet if value in xstar would be worse than this value */
547 SCIP_Bool* success, /**< buffer to store whether a facet could be computed successfully */
548 SCIP_Real* facetcoefs, /**< buffer to store coefficients of facet defining inequality; must be an array of length at least nallvars */
549 SCIP_Real* facetconstant /**< buffer to store constant part of facet defining inequality */
550 );
551
552
553/* Nonlinear Constraint Methods */
554
555/** returns the expression of the given nonlinear constraint */
556SCIP_EXPORT
558 SCIP_CONS* cons /**< constraint data */
559 );
560
561/** gets the left hand side of a nonlinear constraint */
562SCIP_EXPORT
564 SCIP_CONS* cons /**< constraint data */
565 );
566
567/** gets the right hand side of a nonlinear constraint */
568SCIP_EXPORT
570 SCIP_CONS* cons /**< constraint data */
571 );
572
573/** gets the nonlinear constraint as a nonlinear row representation. */
574SCIP_EXPORT
576 SCIP* scip, /**< SCIP data structure */
577 SCIP_CONS* cons, /**< constraint */
578 SCIP_NLROW** nlrow /**< pointer to store nonlinear row */
579 );
580
581/** returns the curvature of the expression of a given nonlinear constraint
582 *
583 * @note The curvature information is computed during CONSINITSOL.
584 */
585SCIP_EXPORT
587 SCIP_CONS* cons /**< constraint data */
588 );
589
590/** checks whether expression of constraint can be represented as quadratic form
591 *
592 * Only sets `*isquadratic` to TRUE if the whole expression is quadratic (in the non-extended formulation) and non-linear.
593 * That is, the expression in each \ref SCIP_QUADEXPR_QUADTERM will be a variable expressions and
594 * \ref SCIPgetVarExprVar() can be used to retrieve the variable.
595 */
596SCIP_EXPORT
598 SCIP* scip, /**< SCIP data structure */
599 SCIP_CONS* cons, /**< constraint data */
600 SCIP_Bool* isquadratic /**< buffer to store whether constraint is quadratic */
601 );
602
603/** changes left-hand-side of a nonlinear constraint
604 *
605 * @attention This method can only be called in the problem stage.
606 */
607SCIP_EXPORT
609 SCIP* scip, /**< SCIP data structure */
610 SCIP_CONS* cons, /**< constraint data */
611 SCIP_Real lhs /**< new left-hand-side */
612 );
613
614/** changes right-hand-side of a nonlinear constraint
615 *
616 * @attention This method can only be called in the problem stage.
617 */
618SCIP_EXPORT
620 SCIP* scip, /**< SCIP data structure */
621 SCIP_CONS* cons, /**< constraint data */
622 SCIP_Real rhs /**< new right-hand-side */
623 );
624
625/** changes expression of a nonlinear constraint
626 *
627 * @attention This method can only be called in the problem stage.
628 */
629SCIP_EXPORT
631 SCIP* scip, /**< SCIP data structure */
632 SCIP_CONS* cons, /**< constraint data */
633 SCIP_EXPR* expr /**< new expression */
634 );
635
636/** adds coef * var to nonlinear constraint
637 *
638 * @attention This method can only be called in the problem stage.
639 */
640SCIP_EXPORT
642 SCIP* scip, /**< SCIP data structure */
643 SCIP_CONS* cons, /**< constraint data */
644 SCIP_VAR* var, /**< variable */
645 SCIP_Real coef /**< coefficient */
646 );
647
648/** adds coef * expr to nonlinear constraint
649 *
650 * @attention This method can only be called in the problem stage.
651 */
652SCIP_EXPORT
654 SCIP* scip, /**< SCIP data structure */
655 SCIP_CONS* cons, /**< nonlinear constraint */
656 SCIP_EXPR* expr, /**< expression */
657 SCIP_Real coef /**< coefficient */
658 );
659
660/** gets absolute violation of nonlinear constraint
661 *
662 * This function evaluates the constraints in the given solution.
663 *
664 * If this value is at most SCIPfeastol(), the constraint would be considered feasible.
665 */
666SCIP_EXPORT
668 SCIP* scip, /**< SCIP data structure */
669 SCIP_CONS* cons, /**< constraint */
670 SCIP_SOL* sol, /**< solution to check */
671 SCIP_Real* viol /**< buffer to store computed violation */
672 );
673
674/** gets scaled violation of nonlinear constraint
675 *
676 * This function evaluates the constraints in the given solution.
677 *
678 * The scaling that is applied to the absolute violation of the constraint
679 * depends on the setting of parameter constraints/nonlinear/violscale.
680 */
681SCIP_EXPORT
683 SCIP* scip, /**< SCIP data structure */
684 SCIP_CONS* cons, /**< constraint */
685 SCIP_SOL* sol, /**< solution to check */
686 SCIP_Real* viol /**< buffer to store computed violation */
687 );
688
689/** returns a variable that appears linearly that may be decreased without making any other constraint infeasible */
690SCIP_EXPORT
692 SCIP* scip, /**< SCIP data structure */
693 SCIP_CONS* cons, /**< nonlinear constraint */
694 SCIP_VAR** var, /**< pointer to store the variable */
695 SCIP_Real* coef /**< pointer to store the coefficient */
696 );
697
698/** returns a variable that appears linearly that may be increased without making any other constraint infeasible */
699SCIP_EXPORT
701 SCIP* scip, /**< SCIP data structure */
702 SCIP_CONS* cons, /**< nonlinear constraint */
703 SCIP_VAR** var, /**< pointer to store the variable */
704 SCIP_Real* coef /**< pointer to store the coefficient */
705 );
706
707
708/* Methods for Expressions in Nonlinear Constraints
709 * All functions in this group assume that the expression is owned by a the nonlinear constraint handler.
710 */
711
712/** returns the number of positive rounding locks of an expression */
713SCIP_EXPORT
715 SCIP_EXPR* expr /**< expression */
716 );
717
718/** returns the number of negative rounding locks of an expression */
719SCIP_EXPORT
721 SCIP_EXPR* expr /**< expression */
722 );
723
724/** returns the variable used for linearizing a given expression (return value might be NULL)
725 *
726 * @note for variable expression it returns the corresponding variable
727 */
728SCIP_EXPORT
730 SCIP_EXPR* expr /**< expression */
731 );
732
733/** returns the number of enforcements for an expression */
734SCIP_EXPORT
736 SCIP_EXPR* expr /**< expression */
737 );
738
739/** returns the data for one of the enforcements of an expression */
740SCIP_EXPORT
742 SCIP_EXPR* expr, /**< expression */
743 int idx, /**< position of enforcement in enfos array */
744 SCIP_NLHDLR** nlhdlr, /**< buffer to store nlhldr */
745 SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< buffer to store nlhdlr data for expression, or NULL */
746 SCIP_NLHDLR_METHOD* nlhdlrparticipation, /**< buffer to store methods where nonlinear handler participates, or NULL */
747 SCIP_Bool* sepabelowusesactivity, /**< buffer to store whether sepabelow uses activity of some expression, or NULL */
748 SCIP_Bool* sepaaboveusesactivity, /**< buffer to store whether sepaabove uses activity of some expression, or NULL */
749 SCIP_Real* auxvalue /**< buffer to store current auxvalue, or NULL */
750 );
751
752/** sets the auxiliary value of expression for one of the enforcements of an expression */
753SCIP_EXPORT
755 SCIP_EXPR* expr, /**< expression */
756 int idx, /**< position of enforcement in enfos array */
757 SCIP_Real auxvalue /**< the new value of auxval */
758 );
759
760/** number of nonlinear handlers whose activity computation and propagation methods depend on the activity of the expression
761 *
762 * @note This method can only be used after the detection methods of the nonlinear handlers have been called.
763 */
764SCIP_EXPORT
766 SCIP_EXPR* expr /**< expression */
767 );
768
769/** number of nonlinear handlers whose separation methods (estimate or enforcement) depend on the activity of the expression
770 *
771 * @note This method can only be used after the detection methods of the nonlinear handlers have been called.
772 */
773SCIP_EXPORT
775 SCIP_EXPR* expr /**< expression */
776 );
777
778/** number of nonlinear handlers whose separation methods (estimate or enforcement) use auxiliary variable of the expression
779 *
780 * @note This method can only be used after the detection methods of the nonlinear handlers have been called.
781 */
782SCIP_EXPORT
784 SCIP_EXPR* expr /**< expression */
785 );
786
787/** method to be called by a nlhdlr during NLHDLRDETECT to notify an expression that it will be used
788 *
789 * - if `useauxvar` is enabled, then ensures that an auxiliary variable will be created in INITLP
790 * - if `useactivityforprop` or `useactivityforsepa{below,above}` is enabled, then ensured that activity will be updated for `expr`
791 * - if `useactivityforprop` is enabled, then increments the count returned by SCIPgetExprNPropUsesActivityNonlinear()
792 * - if `useactivityforsepa{below,above}` is enabled, then increments the count returned by SCIPgetExprNSepaUsesActivityNonlinear()
793 * and also increments this count for all variables in the expression.
794 *
795 * The distinction into `useactivityforprop` and `useactivityforsepa{below,above}` is to recognize variables which domain influences
796 * under/overestimators. Domain propagation routines (like OBBT) may invest more work for these variables.
797 * The distinction into `useactivityforsepabelow` and `useactivityforsepaabove` is to recognize whether a nlhdlr that called this method
798 * will use activity of `expr` in enfomethod \ref SCIP_NLHDLR_METHOD_SEPABELOW or \ref SCIP_NLHDLR_METHOD_SEPAABOVE.
799 */
800SCIP_EXPORT
802 SCIP* scip, /**< SCIP data structure */
803 SCIP_EXPR* expr, /**< expression */
804 SCIP_Bool useauxvar, /**< whether an auxiliary variable will be used for estimate or cut generation */
805 SCIP_Bool useactivityforprop, /**< whether activity of expr will be used by domain propagation or activity calculation (inteval) */
806 SCIP_Bool useactivityforsepabelow, /**< whether activity of expr will be used by underestimation */
807 SCIP_Bool useactivityforsepaabove /**< whether activity of expr will be used by overestimation */
808 );
809
810/** computes value of constraint expression in a given solution
811 *
812 * Stores value of constraint expression in sol in activity.
813 * In case of a domain error (function cannot be evaluated in sol), activity is set to SCIP_INVALID.
814 */
815SCIP_EXPORT
817 SCIP* scip, /**< SCIP data structure */
818 SCIP_CONS* cons, /**< constraint */
819 SCIP_SOL* sol, /**< solution */
820 SCIP_Real* activity /**< buffer to store computed activity */
821 );
822
823/** computes absolute violation for auxvar relation in an expression w.r.t. original variables
824 *
825 * Assume the expression is f(x), where x are original (i.e., not auxiliary) variables.
826 * Assume that f(x) is associated with auxiliary variable z.
827 *
828 * If there are negative locks, then returns the violation of z &le; f(x) and sets `violover` to TRUE.
829 * If there are positive locks, then returns the violation of z &ge; f(x) and sets `violunder` to TRUE.
830 * Of course, if there both negative and positive locks, then return the violation of z = f(x).
831 *
832 * If necessary, f is evaluated in the given solution. If that fails (domain error),
833 * then `viol` is set to SCIPinfinity() and both `violover` and `violunder` are set to TRUE.
834 */
835SCIP_EXPORT
837 SCIP* scip, /**< SCIP data structure */
838 SCIP_EXPR* expr, /**< expression */
839 SCIP_SOL* sol, /**< solution */
840 SCIP_Longint soltag, /**< tag of solution */
841 SCIP_Real* viol, /**< buffer to store computed violation */
842 SCIP_Bool* violunder, /**< buffer to store whether z >= f(x) is violated, or NULL */
843 SCIP_Bool* violover /**< buffer to store whether z <= f(x) is violated, or NULL */
844 );
845
846/** computes absolute violation for auxvar relation in an expression w.r.t. auxiliary variables
847 *
848 * Assume the expression is f(w), where w are auxiliary variables that were introduced by some nlhdlr.
849 * Assume that f(w) is associated with auxiliary variable z.
850 *
851 * If there are negative locks, then returns the violation of z &le; f(w) and sets `violover` to TRUE.
852 * If there are positive locks, then returns the violation of z &ge; f(w) and sets `violunder` to TRUE.
853 * Of course, if there both negative and positive locks, then return the violation of z = f(w).
854 *
855 * If the given value of f(w) is SCIP_INVALID, then `viol` is set to SCIPinfinity() and
856 * both `violover` and `violunder` are set to TRUE.
857 */
858SCIP_EXPORT
860 SCIP* scip, /**< SCIP data structure */
861 SCIP_EXPR* expr, /**< expression */
862 SCIP_Real auxvalue, /**< the value of f(w) */
863 SCIP_SOL* sol, /**< solution that has been evaluated */
864 SCIP_Real* viol, /**< buffer to store computed violation */
865 SCIP_Bool* violunder, /**< buffer to store whether z >= f(w) is violated, or NULL */
866 SCIP_Bool* violover /**< buffer to store whether z <= f(w) is violated, or NULL */
867 );
868
869/** computes relative violation for auxvar relation in an expression w.r.t. auxiliary variables
870 *
871 * Assume the expression is f(w), where w are auxiliary variables that were introduced by some nlhdlr.
872 * Assume that f(w) is associated with auxiliary variable z.
873 *
874 * Taking the absolute violation from SCIPgetExprAbsAuxViolationNonlinear(), this function returns
875 * the absolute violation divided by max(1,|f(w)|).
876 *
877 * If the given value of f(w) is SCIP_INVALID, then `viol` is set to SCIPinfinity() and
878 * both `violover` and `violunder` are set to TRUE.
879 */
880SCIP_EXPORT
882 SCIP* scip, /**< SCIP data structure */
883 SCIP_EXPR* expr, /**< expression */
884 SCIP_Real auxvalue, /**< the value of f(w) */
885 SCIP_SOL* sol, /**< solution that has been evaluated */
886 SCIP_Real* viol, /**< buffer to store computed violation */
887 SCIP_Bool* violunder, /**< buffer to store whether z >= f(w) is violated, or NULL */
888 SCIP_Bool* violover /**< buffer to store whether z <= f(w) is violated, or NULL */
889 );
890
891/** returns bounds on the expression
892 *
893 * This gives an intersection of bounds from
894 * - activity calculation (SCIPexprGetActivity()), if valid,
895 * - auxiliary variable, if present,
896 * - stored by SCIPtightenExprIntervalNonlinear() during domain propagation
897 *
898 * @note The returned interval can be empty!
899 */
900SCIP_EXPORT
902 SCIP* scip, /**< SCIP data structure */
903 SCIP_EXPR* expr /**< expression */
904 );
905
906/** informs the expression about new bounds that can be used for reverse-propagation and to tighten bounds of
907 * corresponding (auxiliary) variable (if any)
908 *
909 * @attention this function should only be called during domain propagation in cons_nonlinear
910 */
911SCIP_EXPORT
913 SCIP* scip, /**< SCIP data structure */
914 SCIP_EXPR* expr, /**< expression to be tightened */
915 SCIP_INTERVAL newbounds, /**< new bounds for the expression */
916 SCIP_Bool* cutoff, /**< buffer to store whether a cutoff was detected */
917 int* ntightenings /**< buffer to add the total number of tightenings, or NULL */
918 );
919
920/** mark constraints that include this expression to be propagated again
921 *
922 * This can be used by, e.g., nlhdlrs, to trigger a new propagation of constraints without
923 * a change of variable bounds, e.g., because new information on the expression is available
924 * that could potentially lead to tighter expression activity values.
925 *
926 * Note, that this call marks also constraints for propagation which only share some variable
927 * with this expression.
928 */
929SCIP_EXPORT
931 SCIP* scip, /**< SCIP data structure */
932 SCIP_EXPR* expr /**< expression to propagate again */
933 );
934
935/** adds violation-branching score to an expression
936 *
937 * Adds a score to the expression-specific violation-branching score, thereby marking it as branching candidate.
938 * The expression must either be a variable expression or have an aux-variable.
939 * In the latter case, branching on auxiliary variables must have been enabled.
940 * In case of doubt, use SCIPaddExprsViolScoreNonlinear(). Roughly, the difference between these functions is that the current
941 * function adds `violscore` to the expression directly, while SCIPaddExprsViolScoreNonlinear() will split the
942 * violation score among all the given expressions according to parameter constraints/nonlinear/branching/violsplit.
943 *
944 * @see SCIPaddExprsViolScoreNonlinear()
945 */
946SCIP_EXPORT
948 SCIP* scip, /**< SCIP data structure */
949 SCIP_EXPR* expr, /**< expression where to add branching score */
950 SCIP_Real violscore /**< violation score to add to expression */
951 );
952
953/** adds violation-branching score to a set of expressions, distributing the score among all the expressions
954 *
955 * Each expression must either be a variable expression or have an aux-variable.
956 * If branching on aux-variables is disabled, then the violation branching score will be distributed among all
957 * variables present in `exprs`.
958 */
959SCIP_EXPORT
961 SCIP* scip, /**< SCIP data structure */
962 SCIP_EXPR** exprs, /**< expressions where to add branching score */
963 int nexprs, /**< number of expressions */
964 SCIP_Real violscore, /**< violation score to add to expression */
965 SCIP_SOL* sol, /**< current solution */
966 SCIP_Bool* success /**< buffer to store whether at least one violscore was added */
967 );
968
969/** gives violation-branching score stored in expression, or 0.0 if no valid score has been stored */
970SCIP_EXPORT
972 SCIP_EXPR* expr /**< expression */
973 );
974
975/** returns the partial derivative of an expression w.r.t. a variable (or SCIP_INVALID if there was an evaluation error)
976 *
977 * @see SCIPexprGetDerivative()
978 */
979SCIP_EXPORT
981 SCIP* scip, /**< SCIP data structure */
982 SCIP_EXPR* expr, /**< root expression of constraint used in the last SCIPevalExprGradient() call */
983 SCIP_VAR* var /**< variable (needs to be in the expression) */
984 );
985
986/** returns the var's coordinate of Hu partial derivative of an expression w.r.t. a variable (or SCIP_INVALID if there was an evaluation error)
987 *
988 * @see SCIPexprGetBardot()
989 */
990SCIP_EXPORT
992 SCIP* scip, /**< SCIP data structure */
993 SCIP_EXPR* expr, /**< root expression of constraint used in the last SCIPevalExprHessianDir() call */
994 SCIP_VAR* var /**< variable (needs to be in the expression) */
995 );
996
997/** evaluates quadratic term in a solution w.r.t. auxiliary variables
998 *
999 * \note This requires that for every expr used in the quadratic data, a variable or auxiliary variable is available.
1000 */
1001SCIP_EXPORT
1003 SCIP* scip, /**< SCIP data structure */
1004 SCIP_EXPR* expr, /**< quadratic expression */
1005 SCIP_SOL* sol /**< solution to evaluate, or NULL for LP solution */
1006 );
1007
1008/** @} */
1009/** @} */
1010
1011/**@addtogroup PublicNlhdlrInterfaceMethods
1012 * @{
1013 */
1014
1015/** creates a nonlinear handler and includes it into the nonlinear constraint handler */
1016SCIP_EXPORT
1018 SCIP* scip, /**< SCIP data structure */
1019 SCIP_NLHDLR** nlhdlr, /**< buffer where to store nonlinear handler */
1020 const char* name, /**< name of nonlinear handler (must not be NULL) */
1021 const char* desc, /**< description of nonlinear handler (can be NULL) */
1022 int detectpriority, /**< detection priority of nonlinear handler */
1023 int enfopriority, /**< enforcement priority of nonlinear handler */
1024 SCIP_DECL_NLHDLRDETECT((*detect)), /**< structure detection callback of nonlinear handler */
1025 SCIP_DECL_NLHDLREVALAUX((*evalaux)), /**< auxiliary evaluation callback of nonlinear handler */
1026 SCIP_NLHDLRDATA* nlhdlrdata /**< data of nonlinear handler (can be NULL) */
1027 );
1028
1029/** get number of nonlinear handler */
1030SCIP_EXPORT
1032 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
1033 );
1034
1035/** get nonlinear handlers */
1036SCIP_EXPORT
1038 SCIP_CONSHDLR* conshdlr /**< nonlinear constraint handler */
1039 );
1040/** returns a nonlinear handler of a given name (or NULL if not found) */
1041SCIP_EXPORT
1043 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
1044 const char* name /**< name of nonlinear handler */
1045 );
1046
1047/** gives expression data that a given nonlinear handler stored in an expression
1048 *
1049 * Returns NULL if expr has not been detected by nlhdlr or nlhdlr did not store data.
1050 */
1051SCIP_EXPORT
1053 SCIP_NLHDLR* nlhdlr, /**< nonlinear handler */
1054 SCIP_EXPR* expr /**< expression */
1055 );
1056
1057/** @} */
1058
1059#ifdef __cplusplus
1060}
1061#endif
1062
1063#endif
static GRAPHNODE ** active
SCIP_VAR ** y
Definition: circlepacking.c:64
SCIP_VAR ** x
Definition: circlepacking.c:63
#define SCIP_Longint
Definition: def.h:158
#define SCIP_Bool
Definition: def.h:91
#define SCIP_Real
Definition: def.h:173
SCIP_Real SCIPevalBilinAuxExprNonlinear(SCIP *scip, SCIP_VAR *x, SCIP_VAR *y, SCIP_CONSNONLINEAR_AUXEXPR *auxexpr, SCIP_SOL *sol)
SCIP_RETCODE SCIPcheckQuadraticNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *isquadratic)
SCIP_RETCODE SCIPaddLinearVarNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real coef)
#define SCIP_DECL_NONLINCONSUPGD(x)
SCIP_RETCODE SCIPmarkExprPropagateNonlinear(SCIP *scip, SCIP_EXPR *expr)
SCIP_RETCODE SCIPcreateConsBasicSignpowerNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_VAR *x, SCIP_VAR *z, SCIP_Real exponent, SCIP_Real xoffset, SCIP_Real zcoef, SCIP_Real lhs, SCIP_Real rhs)
SCIP_Real SCIPgetExprViolScoreNonlinear(SCIP_EXPR *expr)
unsigned int SCIPgetExprNAuxvarUsesNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
void SCIPgetLinvarMayDecreaseNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **var, SCIP_Real *coef)
void SCIPgetExprEnfoDataNonlinear(SCIP_EXPR *expr, int idx, SCIP_NLHDLR **nlhdlr, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_NLHDLR_METHOD *nlhdlrparticipation, SCIP_Bool *sepabelowusesactivity, SCIP_Bool *sepaaboveusesactivity, SCIP_Real *auxvalue)
int SCIPgetExprNLocksPosNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPcreateConsBasicSOCNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *coefs, SCIP_Real *offsets, SCIP_Real constant, SCIP_VAR *rhsvar, SCIP_Real rhscoeff, SCIP_Real rhsoffset)
SCIP_RETCODE SCIPchgLhsNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
SCIP_HASHMAP * SCIPgetVarExprHashmapNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_RETCODE SCIPinsertBilinearTermImplicitNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y, SCIP_VAR *auxvar, SCIP_Real coefx, SCIP_Real coefy, SCIP_Real coefaux, SCIP_Real cst, SCIP_Bool overestimate)
void SCIPsetExprEnfoAuxValueNonlinear(SCIP_EXPR *expr, int idx, SCIP_Real auxvalue)
SCIP_RETCODE SCIPgetNlRowNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_NLROW **nlrow)
SCIP_RETCODE SCIPchgRhsNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
SCIP_RETCODE SCIPgetAbsViolationNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Real *viol)
SCIP_RETCODE SCIPgetExprRelAuxViolationNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Real auxvalue, SCIP_SOL *sol, SCIP_Real *viol, SCIP_Bool *violunder, SCIP_Bool *violover)
SCIP_Longint SCIPgetCurBoundsTagNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_Bool SCIPassumeConvexNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_VAR * SCIPgetExprAuxVarNonlinear(SCIP_EXPR *expr)
int SCIPgetBilinTermIdxNonlinear(SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y)
void SCIPgetLinvarMayIncreaseNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **var, SCIP_Real *coef)
SCIP_RETCODE SCIPinsertBilinearTermExistingNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y, SCIP_VAR *auxvar, int nlockspos, int nlocksneg)
SCIP_RETCODE SCIPaddExprNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_EXPR *expr, SCIP_Real coef)
SCIP_RETCODE SCIPprocessRowprepNonlinear(SCIP *scip, SCIP_NLHDLR *nlhdlr, SCIP_CONS *cons, SCIP_EXPR *expr, SCIP_ROWPREP *rowprep, SCIP_Bool overestimate, SCIP_VAR *auxvar, SCIP_Real auxvalue, SCIP_Bool allowweakcuts, SCIP_Bool branchscoresuccess, SCIP_Bool inenforcement, SCIP_SOL *sol, SCIP_RESULT *result)
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
SCIP_RETCODE SCIPgetExprAbsOrigViolationNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_Real *viol, SCIP_Bool *violunder, SCIP_Bool *violover)
SCIP_Real SCIPgetRhsNonlinear(SCIP_CONS *cons)
unsigned int SCIPgetExprNSepaUsesActivityNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPcreateConsNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable)
SCIP_RETCODE SCIPcreateConsBasicNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs)
SCIP_RETCODE SCIPgetExprActivityNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Real *activity)
int SCIPgetExprNEnfosNonlinear(SCIP_EXPR *expr)
int SCIPgetExprNLocksNegNonlinear(SCIP_EXPR *expr)
SCIP_CONSNONLINEAR_BILINTERM * SCIPgetBilinTermsNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_RETCODE SCIPtightenExprIntervalNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_INTERVAL newbounds, SCIP_Bool *cutoff, int *ntightenings)
SCIP_RETCODE SCIPaddExprsViolScoreNonlinear(SCIP *scip, SCIP_EXPR **exprs, int nexprs, SCIP_Real violscore, SCIP_SOL *sol, SCIP_Bool *success)
int SCIPgetNBilinTermsNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_Real SCIPgetExprPartialDiffNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_VAR *var)
SCIP_Longint SCIPgetLastBoundRelaxTagNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_RETCODE SCIPcollectBilinTermsNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
SCIP_RETCODE SCIPregisterExprUsageNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool useauxvar, SCIP_Bool useactivityforprop, SCIP_Bool useactivityforsepabelow, SCIP_Bool useactivityforsepaabove)
SCIP_RETCODE SCIPcomputeFacetVertexPolyhedralNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_Bool overestimate, SCIP_DECL_VERTEXPOLYFUN((*function)), void *fundata, SCIP_Real *xstar, SCIP_Real *box, int nallvars, SCIP_Real targetvalue, SCIP_Bool *success, SCIP_Real *facetcoefs, SCIP_Real *facetconstant)
SCIP_RETCODE SCIPcreateConsBasicQuadraticNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, int nquadterms, SCIP_VAR **quadvars1, SCIP_VAR **quadvars2, SCIP_Real *quadcoefs, SCIP_Real lhs, SCIP_Real rhs)
SCIP_CONSNONLINEAR_BILINTERM * SCIPgetBilinTermNonlinear(SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y)
#define SCIP_DECL_VERTEXPOLYFUN(f)
SCIP_RETCODE SCIPgetRelViolationNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Real *viol)
SCIP_INTERVAL SCIPgetExprBoundsNonlinear(SCIP *scip, SCIP_EXPR *expr)
unsigned int SCIPgetExprNPropUsesActivityNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPcreateConsQuadraticNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, int nquadterms, SCIP_VAR **quadvars1, SCIP_VAR **quadvars2, SCIP_Real *quadcoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable)
SCIP_RETCODE SCIPchgExprNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_EXPR *expr)
SCIP_EXPRCURV SCIPgetCurvatureNonlinear(SCIP_CONS *cons)
SCIP_Real SCIPgetLhsNonlinear(SCIP_CONS *cons)
void SCIPaddExprViolScoreNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Real violscore)
void SCIPincrementCurBoundsTagNonlinear(SCIP_CONSHDLR *conshdlr, SCIP_Bool boundrelax)
SCIP_RETCODE SCIPgetExprAbsAuxViolationNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Real auxvalue, SCIP_SOL *sol, SCIP_Real *viol, SCIP_Bool *violunder, SCIP_Bool *violover)
SCIP_Real SCIPevalExprQuadraticAuxNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol)
SCIP_Real SCIPgetExprPartialDiffGradientDirNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_VAR *var)
SCIP_RETCODE SCIPincludeConshdlrNonlinear(SCIP *scip)
SCIP_NLHDLR ** SCIPgetNlhdlrsNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_NLHDLREXPRDATA * SCIPgetNlhdlrExprDataNonlinear(SCIP_NLHDLR *nlhdlr, SCIP_EXPR *expr)
int SCIPgetNNlhdlrsNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_NLHDLR * SCIPfindNlhdlrNonlinear(SCIP_CONSHDLR *conshdlr, const char *name)
SCIP_RETCODE SCIPincludeNlhdlrNonlinear(SCIP *scip, SCIP_NLHDLR **nlhdlr, const char *name, const char *desc, int detectpriority, int enfopriority, SCIP_DECL_NLHDLRDETECT((*detect)), SCIP_DECL_NLHDLREVALAUX((*evalaux)), SCIP_NLHDLRDATA *nlhdlrdata)
SCIP callable library.
SCIP_CONSNONLINEAR_AUXEXPR ** exprs
union SCIP_ConsNonlinear_BilinTerm::@4 aux
SCIP_EXPRCURV
Definition: type_expr.h:61
type definitions related to nonlinear handlers of nonlinear constraints
#define SCIP_DECL_NLHDLREVALAUX(x)
Definition: type_nlhdlr.h:202
struct SCIP_NlhdlrData SCIP_NLHDLRDATA
Definition: type_nlhdlr.h:452
unsigned int SCIP_NLHDLR_METHOD
Definition: type_nlhdlr.h:57
#define SCIP_DECL_NLHDLRDETECT(x)
Definition: type_nlhdlr.h:177
struct SCIP_NlhdlrExprData SCIP_NLHDLREXPRDATA
Definition: type_nlhdlr.h:453
enum SCIP_Result SCIP_RESULT
Definition: type_result.h:61
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63