nlhdlr_quadratic.c
Go to the documentation of this file.
33 * - a `QUADEXPRTERM` stores an expression `expr` that is known to appear in a nonlinear, quadratic term, that is
34 * `expr^2` or `expr*other_expr`. It stores its `sqrcoef` (that can be 0), its linear coef and all the bilinear expression
38/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
50#define INTERLOG(x) if( SCIPgetSubscipDepth(scip) == 0 && SCIPgetVerbLevel(scip) >= SCIP_VERBLEVEL_NORMAL ) { x }
74#define TABLE_EARLIEST_STAGE_QUADRATIC SCIP_STAGE_TRANSFORMED /**< output of the statistics table is only printed from this stage onwards */
101 SCIP_Real minquadfiniteact; /**< minimum activity of quadratic part where only terms with finite min
103 SCIP_Real maxquadfiniteact; /**< maximum activity of quadratic part where only terms with finite max
107 SCIP_INTERVAL* quadactivities; /**< activity of each quadratic term as defined in nlhdlrIntevalQuadratic */
122 int ncutsadded; /**< total number of cuts that where generated by separateQuadratic and actually added */
123 SCIP_Longint lastnodenumber; /**< number of last node for which cuts were (allowed to be) generated */
127 SCIP_Bool useintersectioncuts; /**< whether to use intersection cuts for quadratic constraints or not */
130 SCIP_Bool useminrep; /**< whether the minimal representation of the S-free set should be used (instead of the gauge) */
131 SCIP_Bool useboundsasrays; /**< use bounds of variables in quadratic as rays for intersection cuts */
135 SCIP_Real mincutviolation; /**< minimal cut violation the generated cuts must fulfill to be added to the LP */
136 SCIP_Real minviolation; /**< minimal violation the constraint must fulfill such that a cut can be generated */
137 int atwhichnodes; /**< determines at which nodes cut is used (if it's -1, it's used only at the root node,
141 SCIP_Bool ignorebadrayrestriction; /**< should cut be generated even with bad numerics when restricting to ray? */
143 SCIP_Bool trackmore; /**< for monoidal strengthening, should we track more statistics (more expensive) */
146 int ncouldimprovedcoef; /**< number of times a coefficient could improve but didn't because of numerics */
147 int nbadrayrestriction; /**< number of times a cut was aborted because of numerics when restricting to ray */
148 int nbadnonbasic; /**< number of times a cut was aborted because the nonbasic row was not nonbasic enough */
157 SCIP_Real monoidalimprovementsum; /**< sum of average improvement of a cut when using monoidal strengthening */
160 SCIP_Real currentavemonoidalimprovement;/**< average improvement of current cut when using monoidal strengthening */
198 SCIPinfoMessage(scip, file, "Quadratic Nlhdlr : %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %20s %10s %10s %10s \n", "GenCuts", "AddCuts", "CouldImpr", "NLargeRE",
199 "AbrtBadRay", "AbrtPosPhi", "AbrtNonBas", "NStrength", "NMonoidal", "AveCutcoef", "AveMonoidalImprov", "AveDensity", "AveEfficacy", "AveBCutsFrac");
210 SCIPinfoMessage(scip, file, " %10g", nlhdlrdata->ncutsgenerated > 0 ? nlhdlrdata->cutcoefsum / nlhdlrdata->ncutsgenerated : 0.0);
211 SCIPinfoMessage(scip, file, " %20g", (nlhdlrdata->nmonoidal > 0 && nlhdlrdata->trackmore) ? nlhdlrdata->monoidalimprovementsum / nlhdlrdata->nmonoidal : -1.0);
212 SCIPinfoMessage(scip, file, " %10g", nlhdlrdata->ncutsgenerated > 0 ? nlhdlrdata->densitysum / nlhdlrdata->ncutsgenerated : 0.0);
213 SCIPinfoMessage(scip, file, " %10g", nlhdlrdata->ncutsgenerated > 0 ? nlhdlrdata->efficacysum / nlhdlrdata->ncutsgenerated : 0.0);
214 SCIPinfoMessage(scip, file, " %10g", nlhdlrdata->ncalls > 0 ? nlhdlrdata->nboundcuts / nlhdlrdata->ncalls : 0.0);
238 SCIPinfoMessage(scip, NULL, "adding col %s to cut. %g <= col <= %g\n", SCIPvarGetName(SCIPcolGetVar(col)),
240 SCIPinfoMessage(scip, NULL, "col is active at %s. Value %.15f\n", SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_LOWER ? "lower bound" :
282 SCIPinfoMessage(scip, NULL, "adding slack var row_%d to cut. %g <= row <= %g\n", SCIProwGetLPPos(row), SCIProwGetLhs(row), SCIProwGetRhs(row));
283 SCIPinfoMessage(scip, NULL, "row is active at %s = %.15f Activity %.15f\n", SCIProwGetBasisStatus(row) == SCIP_BASESTAT_LOWER ? "lhs" :
284 "rhs" , SCIProwGetBasisStatus(row) == SCIP_BASESTAT_LOWER ? SCIProwGetLhs(row) : SCIProwGetRhs(row),
313 SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, SCIPcolGetVar(rowcols[i]), -rowcoefs[i] * cutcoef) );
366 SCIPexprGetQuadraticData(qexpr, NULL, &nlinexprs, &linexprs, NULL, &nquadexprs, NULL, NULL, NULL);
423 * However, we want to store the the tableau row by columns. Thus, we need to know which of the basic vars `col` is.
463 SCIP_CALL( SCIPgetLPBInvARow(scip, basicvarpos2tableaurow[lppos], binvrow, binvarow, NULL, NULL) );
482/** stores the rows of the tableau corresponding to the basic variables in the quadratic expression
484 * Also return a map storing to which var the entry of a ray corresponds, i.e., if the tableau is
491 * The map maps k to the position of basicvar_k in the variables of the constraint assuming the variables are sorted as
529 SCIPexprGetQuadraticData(qexpr, NULL, &nlinexprs, &linexprs, NULL, &nquadexprs, NULL, NULL, NULL);
541 SCIP_CALL( storeDenseTableauRow(scip, col, basicvarpos2tableaurow, nrayentries, raylength, binvrow, binvarow,
554 SCIP_CALL( storeDenseTableauRow(scip, col, basicvarpos2tableaurow, nrayentries, raylength, binvrow, binvarow,
567 SCIP_CALL( storeDenseTableauRow(scip, col, basicvarpos2tableaurow, nrayentries, raylength, binvrow, binvarow,
607 SCIP_CALL( SCIPallocBufferArray(scip, &(*rays)->raysbegin, SCIPgetNLPCols(scip) + SCIPgetNLPRows(scip) + 1) );
608 SCIP_CALL( SCIPallocBufferArray(scip, &(*rays)->lpposray, SCIPgetNLPCols(scip) + SCIPgetNLPRows(scip)) );
686/** constructs map between the lppos of a variables and its position in the constraint assuming the constraint variables
706 SCIPexprGetQuadraticData(qexpr, NULL, &nlinexprs, &linexprs, NULL, &nquadexprs, NULL, NULL, NULL);
766 * TODO: in case of problems, an idea would be to scale the ray entries; compute the cut coef and scale it back down
768 * The problem is that if the cut coefficient is 1/t where lpsol + t*ray intersects the S-free set.
813 SCIPinfoMessage(scip, NULL, "entries of ray %d are between [%d, %d):\n", rays->nrays, rays->raysbegin[rays->nrays], *nnonz);
841 * Also, we store the rays as if every nonbasic variable was at lower (so that all rays moves to infinity)
854 * In constrast, the nonbasic part of the ray has a 1.0 for nonbasic at lower and a -1.0 for nonbasic at upper, i.e.
895 /* construct dense tableau and map between ray entries and position of corresponding var in quad cons */
933 SCIP_CALL( insertRayEntries(scip, rays, densetableaucols, rayentry2conspos, raylength, nnonbasic,
937 SCIPinfoMessage(scip, NULL, "looked at ray of var %s with basestat %d, it has %d nonzeros\n-----------------\n",
943 SCIPdebugMsg(scip, "nonzero ray associated with variable <%s> has base status zero -> abort storing rays\n",
969 /* set factor to store basic entries of ray as = [-BinvL, BinvU]; basic status of rows are flipped! See lpi.h! */
978 SCIP_CALL( insertRayEntries(scip, rays, densetableaucols, rayentry2conspos, raylength, nnonbasic, -1, factor,
984 SCIPinfoMessage(scip, NULL, "looked at ray of row %d, it has %d nonzeros\n-----------------\n", i, nnonz - oldnnonz);
1033 * To do this transformation and later to compute the actual cut we need to compute and store some quantities.
1035 * - \f$I_0\f$, \f$I_+\f$, and \f$I_-\f$ be the index set of zero, positive, and negative eigenvalues, respectively
1048 * @note if the constraint is q(z) ≤ rhs, then the constant when writing the constraint as quad ≤ 0 is c - rhs.
1049 * @note if the quadratic constraint we are separating is q(z) ≥ lhs, then we multiply by -1.
1086 SCIPexprGetQuadraticData(qexpr, &constant, &nlinexprs, &linexprs, &lincoefs, &nquadexprs, NULL, &eigenvalues,
1126 vdotzlp += SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(expr)) * eigenvectors[offset + j];
1156 *wzlp += (sidefactor * lincoefs[i]) * SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(linexprs[i]));
1191 /* rays are sorted; the first entries correspond to the quad vars, so we stop after first nonquad var entry */
1230 SCIPexprGetQuadraticData(qexpr, NULL, &nlinexprs, NULL, &lincoefs, &nquadexprs, NULL, NULL, NULL);
1245 /* rays are sorted; last entries correspond to the lin vars, so we stop after first quad var entry */
1251 lincoefs[rayidx[i] - nquadexprs]) * raycoefs[i], lincoefs[rayidx[i] - nquadexprs] ,raycoefs[i]);
1259/** computes the dot product of v_i and the current ray as well as of v_i and the apex where v_i
1280 SCIPexprGetQuadraticData(qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, &eigenvalues, &eigenvectors);
1320 * The restriction of the function representing the maximal S-free set to zlp + t * ray has the form
1325 * In case 4, it computes the coefficients for both pieces, in addition to coefficients needed to evaluate the condition
1363 SCIPexprGetQuadraticData(qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, &eigenvalues, &eigenvectors);
1421 /* In theory, the function at 0 must be negative. Because of bad numerics this might not always hold, so we abort
1435 SCIPinfoMessage(scip, NULL, "Restriction yields case 2: a,b,c,d,e %g %g %g %g %g\n", coefs1234a[0], coefs1234a[1], coefs1234a[2],
1453 * The restriction of the function representing the maximal S-free set to zlp + t * ray has the form
1458 * In case 4, it computes the coefficients for both pieces, in addition to coefficients needed to evaluate the condition
1478 SCIP_Real* coefs4b, /**< buffer to store A, B, C, D, and E of case 4b (or NULL if not needed) */
1479 SCIP_Real* coefscondition, /**< buffer to store data to evaluate condition to decide case 4a or 4b */
1498 SCIPexprGetQuadraticData(qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, &eigenvalues, &eigenvectors);
1545 vdotray = computeEigenvecDotRay(&eigenvectors[i * nquadexprs], nquadexprs, raycoefs, rayidx, raynnonz);
1563 printf("Positive eigenvalue: computing D: v^T ray %g, v^T( zlp + b/theta ) %g and theta %g \n", vdotray, dot, (sidefactor * eigenvalues[i]));
1574 printf("Negative eigenvalue: computing A: v^T ray %g, and theta %g \n", vdotray, (sidefactor * eigenvalues[i]));
1593 /* In theory, the function at 0 must be negative. Because of bad numerics this might not always hold, so we abort
1659 * coefficients of condition: stores -numerator of x_{r+1}/ norm xhat, w(ray), and numerator of y_{s+1} at zlp
1671 SCIPinfoMessage(scip, NULL, "Restriction yields case 1,2 or 3: a,b,c,d,e %g %g %g %g %g\n", coefs1234a[0], coefs1234a[1], coefs1234a[2],
1676 SCIPinfoMessage(scip, NULL, "Restriction yields\n Case 4a: a,b,c,d,e %g %g %g %g %g\n", coefs1234a[0],
1678 SCIPinfoMessage(scip, NULL, " Case 4b: a,b,c,d,e %g %g %g %g %g\n", coefs4b[0], coefs4b[1], coefs4b[2],
1680 SCIPinfoMessage(scip, NULL, " Condition: xextra/e, wray, yextra %g %g %g g\n", coefscondition[0],
1694 /*assert(4.0 * (*a) * (*c) >= SQR( *b ) ); *//* the function is defined everywhere, so minimum of radicand must be nonnegative */
1758 * \f[ -\lambda_{r+1} \Vert \hat y(zlp + tsol\, ray)\Vert + \hat y_{s+1}(zlp + tsol\, ray) \leq 0\f]
1761 * \f[ -num(\hat x_{r+1}(zlp)) \sqrt{A t^2 + B t + C} / E + w(ray) \cdot t + num(\hat y_{s+1}(zlp)) \leq 0\f]
1772 return (coefscondition[0] * sqrt(coefs4a[0] * SQR( tsol ) + coefs4a[1] * tsol + coefs4a[2]) + coefscondition[1] *
1800 printf("%d: lb,ub %.10f, %.10f. curr = %g -> phi at curr %g -> phi at lb %g \n", i, lb, ub, curr, phival, evalPhiAtRay(lb, a, b, c, d, e));
1837 /* there is an intersection point if and only if sqrt(A) > D: here we are beliving in math, this might cause
1848 /* SCIPintervalSolveUnivariateQuadExpressionPositiveAllScalar finds all x such that a x^2 + b x >= c and x in bounds.
1849 * it is known that if tsol is the root we are looking for, then gamma(zlp + t * ray) <= 0 between 0 and tsol, thus
1852 SCIPintervalSolveUnivariateQuadExpressionPositiveAllScalar(SCIP_INTERVAL_INFINITY, &result, a - d * d, b - 2.0 * d *
1856 sol = SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, result) ? SCIPinfinity(scip) : SCIPintervalGetInf(result);
1867 /* check that solution is acceptable, ideally it should be <= 0, however when it is positive, we trigger a binary
1868 * search to make it negative. This binary search might return a solution point that is not at accurately 0 as the
1869 * one obtained from the function above. Thus, it might fail to satisfy the condition of case 4b in some cases, e.g.,
1875 printf("interval solution returned %g -> phival = %g, believe it\n", sol, evalPhiAtRay(sol, a, b, c, d, e));
1882 /* perform a binary search to make it negative: this might correct a wrong infinity (e.g. crudeoil_lee1_05) */
1892/** The maximal S-free set is \f$\gamma(z) \leq 0\f$; we find the intersection point of the ray `ray` starting from zlp with the
1907 * It can be shown (given the special properties of \f$\gamma\f$) that the smallest positive root of each function of the form
1911 * & \sqrt{a t^2 + b t + c} - (d t + e)) (\sqrt{a t^2 + b t + c} + (d t + e)) = 0 \\ \Leftrightarrow
1917 * If there is no solution, then the second piece can't have a solution (first piece ≥ second piece for all t)
1971 /* not on 4a --> then the intersection point is whatever 4b says: as phi4a >= phi4b, the solution of phi4b should
1972 * always be larger (but shouldn't be equal at this point given that isCase4a failed, and the condition function
1973 * evaluates to 0 when phi4a == phi4b) than the solution of phi4a; However, because of numerics (or limits in the
1981 if( sol4b < sol1234a && evalPhiAtRay(1.1 * sol1234a, coefs4b[0], coefs4b[1], coefs4b[2], coefs4b[3], coefs4b[4]) <=
2002 /* check at phi at 0 is negative (note; this could be checked before restricting to the ray) also, if this
2030 INTERLOG(printf("Bad numerics 1 2 3 or 4a: max(A,B,C)/min(A,B,C) is too large (%g)\n", max / min); )
2064/** computes the coefficients a, b, c defining the quadratic function defining set S restricted to the line
2067 * The solution to the monoidal strengthening problem is then given by the smallest root of the function
2092 SCIPexprGetQuadraticData(qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, &eigenvalues, &eigenvectors);
2117/** check if ray was in strip by checking if the point in the monoid corresponding to the cutcoef we just found
2141 SCIPexprGetQuadraticData(qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, &eigenvalues, &eigenvectors);
2154 num += sidefactor * eigenvalues[i] * dot * (cutcoef * (vzlp[i] - vapex[i]) + vray[i] + vapex[i]);
2195 SCIPintervalSolveUnivariateQuadExpressionPositiveAllScalar(SCIP_INTERVAL_INFINITY, &result, a, b, -c, bounds);
2196 sol = SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, result) ? SCIPinfinity(scip) : SCIPintervalGetInf(result);
2204 SCIPintervalSolveUnivariateQuadExpressionPositiveAllScalar(SCIP_INTERVAL_INFINITY, &result, a, -b, -c, bounds);
2205 sol = SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, result) ? SCIPinfinity(scip) : -SCIPintervalGetInf(result);
2209 /* check if that solution is close enough or if we need to improve it more with binary search */
2278 SCIPexprGetQuadraticData(qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, &eigenvalues, &eigenvectors);
2310 /* if denom = 0, the S-free set is just the strip, so we don't have an apex -> monoidal not possible */
2366 SCIPexprGetQuadraticData(nlhdlrexprdata->qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, NULL, NULL);
2386 /* check if ray is in strip. If not, monoidal is possible and cutcoef is the strengthened cut coef */
2400/** sparsify intersection cut by replacing non-basic variables with their bounds if their coefficient allows it */
2433 /* if the variable is at its lower or upper bound and the coefficient has the correct sign, we can
2451/** computes intersection cut cuts off sol (because solution sol violates the quadratic constraint cons)
2468 SCIP_Real* interpoints, /**< array to store intersection points for all rays or NULL if nothing
2497 /* if we use monoidal and we are in the right case for it, compute the apex of the S-free set */
2502 SCIPexprGetQuadraticData(nlhdlrexprdata->qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, NULL, NULL);
2537 SCIP_CALL( computeMonoidalStrengthCoef(scip, nlhdlrexprdata, rays->lpposray[i], &rays->rays[rays->raysbegin[i]],
2538 &rays->raysidx[rays->raysbegin[i]], rays->raysbegin[i + 1] - rays->raysbegin[i], vb, vzlp, wcoefs, kappa,
2552 rays->raysbegin[i], vb, vzlp, wcoefs, wzlp, kappa, coefs1234a, coefs4b, coefscondition, success) );
2564 interpoint = computeIntersectionPoint(scip, nlhdlrdata, iscase4, coefs1234a, coefs4b, coefscondition);
2574 /* if we are only computing the "normal" cut coefficient to track statistics (and we have been successful
2629 assert(SCIProwGetBasisStatus(rows[lppos]) == SCIP_BASESTAT_LOWER || SCIProwGetBasisStatus(rows[lppos]) ==
2648 assert(SCIPcolGetBasisStatus(cols[lppos]) == SCIP_BASESTAT_UPPER || SCIPcolGetBasisStatus(cols[lppos]) ==
2705 /* if the pointers look at different variables (or one already arrieved at the end), only one pointer can move
2724 /* if both pointers look at the same variable, just compute the difference and move both pointers */
2784/** checks if the ray alpha * ray_i + (1 - alpha) * ray_j is in the recession cone of the S-free set. To do so,
2818 newraynnonz = (rays->raysbegin[i + 1] - rays->raysbegin[i]) + (rays->raysbegin[j + 1] - rays->raysbegin[j]);
2823 combineRays(&rays->rays[rays->raysbegin[i]], &rays->raysidx[rays->raysbegin[i]], rays->raysbegin[i + 1] -
2829 SCIP_CALL( computeRestrictionToRay(scip, nlhdlrexprdata, sidefactor, iscase4, newraycoefs, newrayidx,
2835 /* check if restriction to "new" ray is numerically nasty. If so, treat the corresponding rho as if phi is
2840 interpoint = computeIntersectionPoint(scip, nlhdlrdata, iscase4, coefs1234a, coefs4b, coefscondition);
2870 SCIP_Real* interpoints, /**< array to store intersection points for all rays or NULL if nothing
2878 /* go through all rays not in the recession cone and compute the largest negative steplength possible. The
2897 if( raysAreDependent(scip, &rays->rays[rays->raysbegin[i]], &rays->raysidx[rays->raysbegin[i]],
2899 &rays->raysidx[rays->raysbegin[idx]], rays->raysbegin[idx + 1] - rays->raysbegin[idx], &coef) )
2908 * Since we know that we can only use alpha < maxalpha, we don't need to do the whole binary search
2909 * for every ray i. We only need to search the intervall [0, maxalpha]. Thereby, we start by checking
2930 SCIP_CALL( rayInRecessionCone(scip, nlhdlrdata, nlhdlrexprdata, rays, idx, i, sidefactor, iscase4, vb,
2947 /* now we found the best convex combination which we use to derive the corresponding coef. If alpha = 0, we
2972/** computes intersection cut using negative edge extension to strengthen rays that do not intersect
3010 /* compute all intersection points and store them in interpoints; build not-stregthened intersection cut */
3011 SCIP_CALL( computeIntercut(scip, nlhdlrdata, nlhdlrexprdata, rays, sidefactor, iscase4, vb, vzlp, wcoefs, wzlp, kappa,
3021 /* go through all intersection points that are equal to infinity -> these correspond to the rays which are in the
3022 * recession cone of C, i.e. the rays for which we (possibly) can compute a negative steplength */
3037 SCIP_CALL( findRho(scip, nlhdlrdata, nlhdlrexprdata, rays, i, sidefactor, iscase4, vb, vzlp, wcoefs, wzlp, kappa,
3059 assert(SCIProwGetBasisStatus(rows[lppos]) == SCIP_BASESTAT_LOWER || SCIProwGetBasisStatus(rows[lppos]) ==
3062 SCIP_CALL( addRowToCut(scip, rowprep, SCIProwGetBasisStatus(rows[lppos]) == SCIP_BASESTAT_UPPER ? cutcoef :
3074 assert(SCIPcolGetBasisStatus(cols[lppos]) == SCIP_BASESTAT_UPPER || SCIPcolGetBasisStatus(cols[lppos]) ==
3076 SCIP_CALL( addColToCut(scip, rowprep, sol, SCIPcolGetBasisStatus(cols[lppos]) == SCIP_BASESTAT_UPPER ? -cutcoef :
3108 if( SCIPisInfinity(scip, SCIPvarGetLbLocal(var)) && SCIPisInfinity(scip, SCIPvarGetUbLocal(var)) )
3129/** This function finds vertex (w.r.t. bounds of variables appearing in the quadratic) that is closest to the current
3158 SCIPexprGetQuadraticData(qexpr, NULL, &nlinexprs, &linexprs, NULL, &nquadexprs, NULL, NULL, NULL);
3191 rays->lpposray[i + nquadexprs] = SCIPcolGetLPPos(SCIPvarGetCol(SCIPgetExprAuxVarNonlinear(linexprs[i])));
3207 SCIP_CALL( setVarToNearestBound(scip, sol, vertex, auxvar, &rays->rays[nquadexprs + nlinexprs], success) );
3302/** generates intersection cut that cuts off sol (which violates the quadratic constraint cons) */
3339 SCIPinfoMessage(scip, NULL, "Generating intersection cut for quadratic expr %p aka", (void*)expr);
3414 SCIP_CALL( intercutsComputeCommonQuantities(scip, nlhdlrexprdata, auxvar, sidefactor, soltoseparate,
3437 SCIP_CALL( computeStrengthenedIntercut(scip, nlhdlrdata, nlhdlrexprdata, rays, sidefactor, iscase4, vb, vzlp, wcoefs,
3445 SCIP_CALL( computeIntercut(scip, nlhdlrdata, nlhdlrexprdata, rays, sidefactor, iscase4, vb, vzlp, wcoefs, wzlp, kappa,
3464 * It is propagable, if a variable (aka child expr) appears at least twice, which is the case if at least two of the following hold:
3488 if( (lincoef != 0.0) + (sqrcoef != 0.0) + nadjbilin >= 2 ) /*lint !e514*/ /* actually MIN(2, nadjbilin), but we check >= 2 */
3497 * A term is propagable, if its variable (aka child expr) appears at least twice, which is the case if at least two of the following hold:
3515 return (lincoef != 0.0) + (sqrcoef != 0.0) + nadjbilin >= 2; /*lint !e514*/ /* actually MIN(2, nadjbilin), but we check >= 2 */
3518/** solves a quadratic equation \f$ a\, \text{expr}^2 + b\, \text{expr} \in \text{rhs} \f$ (with \f$b\f$ an interval)
3542 SCIPinfoMessage(scip, NULL, "Propagating <expr> by solving a <expr>^2 + b <expr> in rhs, where <expr> is: ");
3560 SCIPintervalSolveUnivariateQuadExpression(SCIP_INTERVAL_INFINITY, &newrange, a, b, rhs, exprbounds);
3571/** solves a linear equation \f$ b\, \text{expr} \in \text{rhs} \f$ (with \f$b\f$ a scalar) and reduces bounds on `expr` or deduces infeasibility if possible */
3590 SCIPinfoMessage(scip, NULL, "Propagating <expr> by solving %g <expr> in [%g, %g], where <expr> is: ", b, rhs.inf, rhs.sup);
3651 * if c = 0, then the function is monotone which means the maximum is also at one of the boundaries
3653 * if a < 0, then the function is concave. The function then has a maximum if and only if there is a point with derivative 0,
3654 * that is, iff -a/x^2 - c = 0 has a solution; i.e. if -a/c >= 0, i.e. (using a<0 and c != 0), c > 0.
3669 * the (restricted) maximum is at a boundary (we could even say at which boundary, but that doesn't save much)
3674 /* the maximum at sqrt(-a/c) is -2*sqrt(-a*c), so we compute an upper bound for that by computing a lower bound for 2*sqrt(-a*c) */
3680 /* if the interval containing sqrt(-a/c) is contained in dom, then we can return -negunresmax */
3684 /* now what is left is the case where we cannot say for sure whether sqrt(-a/c) is contained in dom or not
3692/** computes the range of rhs/x - coef * x for x in exprdom; this is used for the propagation of bilinear terms
3694 * If 0 is in the exprdom, we set range to \f$\mathbb{R}\f$ (even though this is not quite correct, it is correct for the
3696 * TODO: maybe check before calling it whether 0 is in the domain and then just avoid calling it
3698 * If rhs is [A,B] and x > 0, then we want the min of A/x - coef*x and max of B/x - coef*x for x in [exprdom].
3699 * If rhs is [A,B] and x < 0, then we want the min of B/x - coef*x and max of A/x - coef*x for x in [exprdom].
3700 * However, this is the same as min of -B/x + coef*x and max of -A/x + coef*x for x in -[exprdom].
3746 SCIP_Bool* infeasible, /**< buffer to store whether an exps' bounds were propagated to an empty interval */
3761 oldboundslin[i] = SCIPexprGetActivity(linexprs[i]); /* TODO use SCIPgetExprBoundsNonlinear(scip, linexprs[i]) ? */
3768 /* SCIP is more conservative with what constitutes a reduction than interval arithmetic so we follow SCIP */
3772 SCIP_CALL( SCIPtightenExprIntervalNonlinear(scip, linexprs[i], newboundslin[i], infeasible, nreductions) );
3797 SCIPexprGetQuadraticData((*nlhdlrexprdata)->qexpr, NULL, NULL, NULL, NULL, &nquadexprs, NULL, NULL, NULL);
3812 * We define a _propagable_ quadratic expression as a quadratic expression whose termwise propagation does not yield the
3813 * best propagation. In other words, is a quadratic expression that suffers from the dependency problem.
3815 * Specifically, a propagable quadratic expression is a sum expression such that there is at least one expr that appears
3816 * at least twice (because of simplification, this means it appears in a quadratic terms and somewhere else).
3817 * For example: \f$x^2 + y^2\f$ is not a propagable quadratic expression; \f$x^2 + x\f$ is a propagable quadratic expression;
3820 * Furthermore, we distinguish between propagable and non-propagable terms. A term is propagable if any of the expressions
3821 * involved in it appear somewhere else. For example, \f$xy + z^2 + z\f$ is a propagable quadratic, the term \f$xy\f$ is
3822 * non-propagable, and \f$z^2\f$ is propagable. For propagation, non-propagable terms are handled as if they were linear
3823 * terms, that is, we do not use the activity of \f$x\f$ and \f$y\f$ to compute the activity of \f$xy\f$ but rather we use directly
3824 * the activity of \f$xy\f$. Similarly, we do not backward propagate to \f$x\f$ and \f$y\f$ (the product expr handler will do this),
3825 * but we backward propagate to \f$x*y\f$. More technically, we register \f$xy\f$ for its activity usage, rather than\f$x\f$ and \f$y\f$.
3827 * For propagation, we store the quadratic in our data structure in the following way: We count how often a variable
3828 * appears. Then, a bilinear product expr_i * expr_j is stored as expr_i * expr_j if # expr_i appears > # expr_j
3829 * appears. When # expr_i appears = # expr_j appears, it then it will be stored as expr_i * expr_j if and only if
3830 * expr_i < expr_j, where '<' is the expression order (see \ref EXPR_ORDER "Ordering Rules" in \ref scip_expr.h).
3831 * Heuristically, this should be useful for propagation. The intuition is that by factoring out the variable that
3834 * Simple convex quadratics like \f$x^2 + y^2\f$ are ignored since the default nlhdlr will take care of them.
3837 * @note Common subexpressions are also assumed to have been identified, the hashing will fail otherwise!
3841 * - expr < expr * other_expr: u*v < w holds if and only if v < w (OR8), but here w = u < v, since expr comes before
3851 * It also implies that x^-2 < x^-1, but since, so far, we do not interpret x^-2 as (x^-1)^2, it is not a problem.
3907 SCIPdebugMsg(scip, "expr %p is not propagable and in presolving -> abort detect\n", (void*)expr);
3911 /* if we do not use intersection cuts and are not propagable, then we do not want to handle it at all;
3912 * if not propagable, then we need to check the curvature to decide if we want to generate intersection cuts
3943 SCIPexprGetQuadraticData(expr, NULL, &nlinexprs, &linexprs, NULL, &nquadexprs, &nbilin, NULL, NULL);
3959 SCIPinfoMessage(scip, NULL, "quadterm %d propagable, using %p, unbounded=%d\n", i, (void*)argexpr, nbilin >
3966 * we should make use nlhdlrs in pow or product for this term, so we register usage of the square or product
3980 SCIPinfoMessage(scip, NULL, "quadterm %d non-propagable square, using %p\n", i, (void*)sqrexpr);
3985 /* we have expr1 * other_expr or other_expr * expr1; know that expr1 is non propagable, but to decide if
3986 * we want the bounds of expr1 or of the product expr1 * other_expr (or other_expr * expr1), we have to
3988 * frequency), we can deduce that other_expr doesn't appear anywhere else (i.e. is non propagable) if the
3989 * product is of the form expr1 * other_expr; however, if we see other_expr * expr1 we need to find
4003 SCIPinfoMessage(scip, NULL, "quadterm %d non-propagable product, using %p\n", i, (void*)prodexpr);
4009 /* check if other_expr is propagable in which case we need the bounds of expr1; otherwise we just need
4012 * TODO this should be done faster, maybe store pos1 in bilinexprterm or store quadexprterm's in bilinexprterm
4024 SCIPinfoMessage(scip, NULL, "quadterm %d non-propagable alien product, using %p\n", i, (void*)argexpr);
4054 assert(SCIPgetStage(scip) >= SCIP_STAGE_INITSOLVE); /* separation should only be required in (init)solving stage */
4056 /* check if we can do something more: check curvature of quadratic function stored in nlexprdata
4057 * this is currently only used to decide whether we want to separate, so it can be skipped if in presolve
4060 SCIP_CALL( SCIPcomputeExprQuadraticCurvature(scip, expr, &nlexprdata->curvature, NULL, nlhdlrdata->useintersectioncuts) );
4066 if( nlhdlrdata->useintersectioncuts && eigenvalues != NULL && (*enforcing & SCIP_NLHDLR_METHOD_SEPABELOW) ==
4072 if( nlhdlrdata->useintersectioncuts && eigenvalues != NULL && (*enforcing & SCIP_NLHDLR_METHOD_SEPAABOVE) == FALSE &&
4093 SCIPexprGetQuadraticData(expr, NULL, &nlinexprs, &linexprs, NULL, &nquadexprs, NULL, NULL, NULL);
4106 SCIPdebugMsg(scip, "expr %p is quadratic and propagable -> propagate and separate\n", (void*)expr);
4118 SCIPdebugMsg(scip, "expr is %s in the original variables\n", nlexprdata->curvature == SCIP_EXPRCURV_CONCAVE ? "concave" : "convex");
4155 SCIPexprGetQuadraticData(expr, &constant, &nlinexprs, &linexprs, &lincoefs, &nquadexprs, &nbilinexprs, NULL, NULL);
4183 *auxvalue += coef * SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(expr1)) * SCIPgetSolVal(scip, sol,
4232 /* right now can use interesction cuts only if a basic LP solution is at hand; TODO: in principle we can do something
4235 if( sol != NULL || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL || !SCIPisLPSolBasic(scip) )
4244 if( (nlhdlrdata->atwhichnodes == -1 && depth != 0) || (nlhdlrdata->atwhichnodes != -1 && depth % nlhdlrdata->atwhichnodes != 0) )
4250 /* do not add more than ncutslimitroot cuts in root node and ncutslimit cuts in the non-root nodes */
4257 /*else if( (depth > 0 && nlhdlrdata->ncutsadded - nlhdlrdata->lastncuts >= nlhdlrdata->ncutslimit) || (depth == 0 &&
4293 /* we can't build an intersection cut when the expr is the root of some constraint and also a subexpression of
4301 /* if we are the root of a constraint and we are feasible w.r.t our auxiliary variables, that is, auxvalue is
4304 if( cons == nlhdlrexprdata->cons && ((overestimate && (SCIPgetLhsNonlinear(cons)) - auxvalue < SCIPfeastol(scip)) ||
4333 SCIP_CALL( generateIntercut(scip, expr, nlhdlrdata, nlhdlrexprdata, cons, sol, rowprep, overestimate, &success) );
4350 SCIP_CALL( SCIPcleanupRowprep(scip, rowprep, sol, nlhdlrdata->mincutviolation, &violation, &success) );
4354 /* if cut looks good (numerics ok and cutting off solution), then turn into row and add to sepastore */
4364 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%s_intersection_quadratic%p_lp%" SCIP_LONGINT_FORMAT,
4372 printf(" -> found maxquad-free cut <%s>: act=%f, lhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n\n",
4379 /*printf("SCIP DEPTH %d got a cut with violation %g, efficacy %g and r/e %g\n", SCIPgetSubscipDepth(scip),
4380 * violation, SCIPgetCutEfficacy(scip, NULL, row), SCIPgetRowMaxCoef(scip, row) / SCIPgetRowMinCoef(scip, row) /
4384 if( ! nlhdlrdata->ignorehighre || SCIPgetRowMaxCoef(scip, row) / SCIPgetRowMinCoef(scip, row) / SCIPgetCutEfficacy(scip, NULL, row) < 1e9 )
4403 nlhdlrdata->densitysum += (SCIP_Real) SCIProwprepGetNVars(rowprep) / (SCIP_Real) SCIPgetNVars(scip);
4426 * Interval arithmetic suffices when no variable appears twice, however this is seldom the case, so we try
4430 * where \f$q_l = a_l \text{expr}_l^2 + c_l \text{expr}_l + \sum_{i \in P_l} b_{il} \text{expr}_i \text{expr}_l\f$
4431 * 2. build interval quadratic functions, i.e., \f$a x^2 + b x\f$ where \f$b\f$ is an interval, i.e.,
4434 * \f$\min/\max a_l \text{expr}_l^2 + \text{expr}_l [\sum_{i \in P_l} b_{il} \text{expr}_i + c_l] : \text{expr}_l \in [\text{expr}_l]\f$
4437 * 1. The \f$l\f$-th quadratic expr (expressions that appear quadratically) is associated with \f$q_l\f$.
4438 * 2. `nlhdlrdata->quadactivities[l]` is the activity of \f$q_l\f$ as computed in the description above.
4439 * 3. The \f$q_l\f$ of a quadratic term might be empty, in which case `nlhdlrdata->quadactivities[l]` is [0,0].\n
4440 * For example, consider \f$x^2 + xy\f$. There are two quadratic expressions, \f$x\f$ and \f$y\f$.
4441 * The \f$q\f$ associated to \f$x\f$ is \f$x^2 + xy\f$, while the \f$q\f$ associated to \f$y\f$ is empty.
4445 * @note The order matters! If \f$\text{expr}_i\, \text{expr}_l\f$ is a term in the quadratic, then \f$i\f$ is *not* in \f$P_l\f$
4465 SCIPexprGetQuadraticData(expr, &constant, &nlinexprs, &linexprs, &lincoefs, &nquadexprs, NULL, NULL, NULL);
4488 SCIPintervalAdd(SCIP_INTERVAL_INFINITY, &nlhdlrexprdata->linactivity, nlhdlrexprdata->linactivity, linterminterval);
4520 SCIPexprGetQuadraticQuadTerm(expr, i, &qexpr, &lincoef, &sqrcoef, &nadjbilin, &adjbilin, &sqrexpr);
4524 /* term is not propagable, i.e., the exprs involved in term only appear once; thus use the activity of the
4525 * quadratic term directly and not the activity of the exprs involed in the term. See also documentation of
4549 SCIPinfoMessage(scip, NULL, "Computing activity for quadratic term %g <expr>, where <expr> is: ", sqrcoef);
4564 /* the quadratic expression expr1 appears only as expr1 * expr2, so its 'q' is expr1 * expr2 */
4577 SCIPinfoMessage(scip, NULL, "Computing activity for quadratic term %g <expr>, where <expr> is: ", prodcoef);
4583 /* the quadratic expression expr1 appears as expr2 * expr1, thus its 'q' is empty, see also the Notes
4596 SCIPexprGetQuadraticQuadTerm(expr, i, &qexpr, &lincoef, &sqrcoef, &nadjbilin, &adjbilin, NULL);
4635 SCIPinfoMessage(scip, NULL, " [%g,%g]\n", SCIPexprGetActivity(expr2).inf, SCIPexprGetActivity(expr2).sup);
4639 /* TODO: under which assumptions do we know that we just need to compute min or max? its probably the locks that give some information here */
4653 SCIPinfoMessage(scip, NULL, "Computing activity for quadratic term %g <expr>^2 + [%g,%g] <expr>, where <expr> is: ", sqrcoef, b.inf, b.sup);
4662 SCIPintervalAdd(SCIP_INTERVAL_INFINITY, &nlhdlrexprdata->quadactivity, nlhdlrexprdata->quadactivity, nlhdlrexprdata->quadactivities[i]);
4693 SCIPdebugMsg(scip, "Activity of quadratic part is [%g, %g]\n", nlhdlrexprdata->quadactivity.inf, nlhdlrexprdata->quadactivity.sup);
4697 SCIPintervalAdd(SCIP_INTERVAL_INFINITY, interval, nlhdlrexprdata->linactivity, nlhdlrexprdata->quadactivity);
4699 nlhdlrexprdata->activitiestag = SCIPgetCurBoundsTagNonlinear(SCIPfindConshdlr(scip, "nonlinear"));
4706 * @note the implemented technique is a proxy for solving the problem min/max{ x_i : quad expr in [quad expr] }
4724 SCIPdebugMsg(scip, "Reverse propagation of quadratic expr given bounds = [%g,%g]\n", bounds.inf, bounds.sup);
4744 * if the activity stored in expr is more recent than the partial activities stored in this nlhdlrexprdata,
4749 SCIP_CALL( nlhdlrIntevalQuadratic(scip, nlhdlr, expr, nlhdlrexprdata, &quadactivity, NULL, NULL) );
4752 SCIPexprGetQuadraticData(expr, &constant, &nlinexprs, &linexprs, &lincoefs, &nquadexprs, NULL, NULL, NULL);
4754 /* propagate linear part in rhs = expr's interval - quadratic activity; first, reconstruct the quadratic activity */
4756 nlhdlrexprdata->nneginfinityquadact > 0 ? -SCIP_INTERVAL_INFINITY : nlhdlrexprdata->minquadfiniteact,
4757 nlhdlrexprdata->nposinfinityquadact > 0 ? SCIP_INTERVAL_INFINITY : nlhdlrexprdata->maxquadfiniteact);
4761 SCIP_CALL( reversePropagateLinearExpr(scip, linexprs, nlinexprs, lincoefs, constant, rhs, infeasible, nreductions) );
4767 /* propagate quadratic part in expr's interval - linear activity, where linear activity was computed in INTEVAL.
4771 * - for each expression expr_i, write the quadratic expression as a_i expr^2_i + expr_i ( \sum_{j \in J_i} b_ij
4773 * - compute the interval b = [\sum_{j \in J_i} b_ij expr_j + c_i], where J_i are all the indices j such that the
4775 * - use some technique (like the one in nlhdlrIntevalQuadratic), to evaluate the activity of rest_i = [quadratic
4779 * However, this might be expensive, especially computing rest_i. Hence, we implement a simpler version.
4780 * - we use the same partition as in nlhdlrIntevalQuadratic for the bilinear terms. This way, b = [\sum_{j \in P_i}
4781 * b_ij expr_j + c_i], where P_i is the set of indices j such that expr_i * expr_j appears in that order
4782 * - we evaluate the activity of rest_i as sum_{k \neq i} [\min q_k, \max q_k] where q_k = a_k expr_k^2 + [\sum_{j
4783 * \in P_k} b_jk expr_j + c_k] expr_k. The intervals [\min q_k, \max q_k] were already computed in
4786 * A downside of the above is that we might not deduce any bounds for variables that appear less often. For example,
4787 * consider x^2 + x * y + x * z + y * z + z. This quadratic gets partitioned as (x^2 + x*y + x*z) + (z*y + z). The
4788 * first parenthesis is interpreted as a function of x, while the second one as a function of z.
4789 * To also get bounds on y, after reverse propagating x in x^2 + x*y + x*z \in rhs, we rewrite this as y + z \in rhs/x -
4792 * \sum_{j \in J_i} b_ij expr_j in ([expr activity] - quadratic expression in expr_k for k \neq i - c_i) / expr_i - a_i expr_i,
4793 * compute an interval for the right hand side (see computeRangeForBilinearProp) and use that to propagate the
4797 * The idea of that technique was to borrow a bilinear term expr_k expr_l when propagating expr_l and the quadratic
4799 * Since in P_l we only consider the indices of expressions that appear multiplying expr_l as _second_ factor, we
4801 * The problem is that the contribution of b_kl * expr_k * expr_l to rest_i is not just [b_kl * expr_k * expr_l], but
4802 * rather quadactivities[k] (= max/min of a_k expr_k^2 + expr_k * [c_k + sum_i \in P_k b_ki expr_i]).
4804 * But, if expr_k only appears as expr_k * expr_l, then quadactivities[k] = [b_kl * expr_k * expr_l]. So this
4826 SCIPexprGetQuadraticQuadTerm(expr, i, &qexpr, &lincoef, &sqrcoef, &nadjbilin, &adjbilin, &sqrexpr);
4831 * if [q_i].sup = +infinity and there is = 1 contributing +infinity -> rest_i.sup = maxquadfiniteact
4834 * if [q_i].sup = finite and there is = 0 contributing +infinity -> rest_i.sup = maxquadfiniteact - [q_i].sup
4846 rest_i.sup = nlhdlrexprdata->maxquadfiniteact - SCIPintervalGetSup(nlhdlrexprdata->quadactivities[i]);
4864 rest_i.inf = nlhdlrexprdata->minquadfiniteact - SCIPintervalGetInf(nlhdlrexprdata->quadactivities[i]);
4874#ifdef SCIP_DISABLED_CODE /* I (SV) added the following in cons_quadratic to fix/workaround some bug. Maybe we'll need this here, too? */
4876 * what we tried to do here is to remove the contribution of the i'th bilinear term (=bilinterm) to [minquadactivity,maxquadactivity] from rhs
4877 * however, quadactivity is computed differently (as x*(a1*y1+...+an*yn)) than q_i (a*ak*yk) and since interval arithmetics do overestimation,
4878 * it can happen that q_i is actually slightly larger than quadactivity, which results in rest_i being (slightly) empty
4879 * a proper fix could be to compute the quadactivity also as x*a1*y1+...+x*an*yn if sqrcoef=0, but due to taking
4912 /* qexpr only appears in a term of the form qexpr * other_expr (or other_expr * qexpr); we only care about
4913 * getting bounds for the product, thus we will compute these bounds when qexpr appears as qexpr *
4914 * other_expr; note that if it appears as other_expr * qexpr, then when we process other_expr bounds for the
4916 * TODO: we can actually avoid computing rhs_i in the case that qexpr is not propagable and it appears as
4982 /* if 0 is not in [expr_i], then propagate bilincoefs^T bilinexpr in rhs_i/expr_i - a_i expr_i - c_i */
5004 /* TODO FIXME: we are overestimating the number of reductions: an expr might be tightened many times! */
5060 SCIP_CALL( SCIPincludeNlhdlrNonlinear(scip, &nlhdlr, NLHDLR_NAME, NLHDLR_DESC, NLHDLR_DETECTPRIORITY,
5111 "determines at which nodes cut is used (if it's -1, it's used only at the root node, if it's n >= 0, it's used at every multiple of n",
constraint handler for nonlinear constraints specified by algebraic expressions
power and signed power expression handlers
product expression handler
sum expression handler
variable expression handler
SCIP_Longint SCIPgetCurBoundsTagNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:12957
SCIP_VAR * SCIPgetExprAuxVarNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14336
SCIP_RETCODE SCIPtightenExprIntervalNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_INTERVAL newbounds, SCIP_Bool *cutoff, int *ntightenings)
Definition: cons_nonlinear.c:14727
SCIP_RETCODE SCIPregisterExprUsageNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool useauxvar, SCIP_Bool useactivityforprop, SCIP_Bool useactivityforsepabelow, SCIP_Bool useactivityforsepaabove)
Definition: cons_nonlinear.c:14478
SCIP_INTERVAL SCIPgetExprBoundsNonlinear(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14671
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
SCIP_RETCODE SCIPincludeNlhdlrQuadratic(SCIP *scip)
Definition: nlhdlr_quadratic.c:5047
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2537
SCIP_Real SCIPgetCutEfficacy(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:94
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPprintExprQuadratic(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2470
void SCIPexprGetQuadraticBilinTerm(SCIP_EXPR *expr, int termidx, SCIP_EXPR **expr1, SCIP_EXPR **expr2, SCIP_Real *coef, int *pos2, SCIP_EXPR **prodexpr)
Definition: expr.c:4204
void SCIPexprSetCurvature(SCIP_EXPR *expr, SCIP_EXPRCURV curvature)
Definition: expr.c:4068
SCIP_Bool SCIPexprAreQuadraticExprsVariables(SCIP_EXPR *expr)
Definition: expr.c:4240
void SCIPexprGetQuadraticData(SCIP_EXPR *expr, SCIP_Real *constant, int *nlinexprs, SCIP_EXPR ***linexprs, SCIP_Real **lincoefs, int *nquadexprs, int *nbilinexprs, SCIP_Real **eigenvalues, SCIP_Real **eigenvectors)
Definition: expr.c:4119
SCIP_RETCODE SCIPcomputeExprQuadraticCurvature(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRCURV *curv, SCIP_HASHMAP *assumevarfixed, SCIP_Bool storeeigeninfo)
Definition: scip_expr.c:2586
SCIP_RETCODE SCIPprintExpr(SCIP *scip, SCIP_EXPR *expr, FILE *file)
Definition: scip_expr.c:1486
SCIP_RETCODE SCIPcheckExprQuadratic(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool *isquadratic)
Definition: scip_expr.c:2377
void SCIPexprGetQuadraticQuadTerm(SCIP_EXPR *quadexpr, int termidx, SCIP_EXPR **expr, SCIP_Real *lincoef, SCIP_Real *sqrcoef, int *nadjbilin, int **adjbilin, SCIP_EXPR **sqrexpr)
Definition: expr.c:4164
void SCIPintervalSetRoundingModeUpwards(void)
Definition: intervalarith.c:352
void SCIPintervalSetRoundingModeDownwards(void)
Definition: intervalarith.c:344
SCIP_Real SCIPintervalGetInf(SCIP_INTERVAL interval)
Definition: intervalarith.c:405
SCIP_Real SCIPintervalQuadUpperBound(SCIP_Real infinity, SCIP_Real a, SCIP_INTERVAL b_, SCIP_INTERVAL x)
Definition: intervalarith.c:2995
SCIP_Bool SCIPintervalIsEntire(SCIP_Real infinity, SCIP_INTERVAL operand)
Definition: intervalarith.c:482
void SCIPintervalSub(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:797
void SCIPintervalSetEntire(SCIP_Real infinity, SCIP_INTERVAL *resultant)
Definition: intervalarith.c:470
void SCIPintervalSquareRoot(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand)
Definition: intervalarith.c:1503
SCIP_ROUNDMODE SCIPintervalGetRoundingMode(void)
Definition: intervalarith.c:276
void SCIPintervalSolveUnivariateQuadExpression(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL sqrcoeff, SCIP_INTERVAL lincoeff, SCIP_INTERVAL rhs, SCIP_INTERVAL xbnds)
Definition: intervalarith.c:3412
void SCIPintervalSetRoundingMode(SCIP_ROUNDMODE roundmode)
Definition: intervalarith.c:268
void SCIPintervalSet(SCIP_INTERVAL *resultant, SCIP_Real value)
Definition: intervalarith.c:421
SCIP_Bool SCIPintervalIsEmpty(SCIP_Real infinity, SCIP_INTERVAL operand)
Definition: intervalarith.c:458
void SCIPintervalSetBounds(SCIP_INTERVAL *resultant, SCIP_Real inf, SCIP_Real sup)
Definition: intervalarith.c:433
void SCIPintervalMulScalar(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_Real operand2)
Definition: intervalarith.c:1115
void SCIPintervalDivScalar(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_Real operand2)
Definition: intervalarith.c:1208
SCIP_Real SCIPintervalGetSup(SCIP_INTERVAL interval)
Definition: intervalarith.c:413
void SCIPintervalSolveUnivariateQuadExpressionPositiveAllScalar(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_Real sqrcoeff, SCIP_Real lincoeff, SCIP_Real rhs, SCIP_INTERVAL xbnds)
Definition: intervalarith.c:3208
int SCIPintervalPropagateWeightedSum(SCIP_Real infinity, int noperands, SCIP_INTERVAL *operands, SCIP_Real *weights, SCIP_Real constant, SCIP_INTERVAL rhs, SCIP_INTERVAL *resultants, SCIP_Bool *infeasible)
Definition: intervalarith.c:4625
void SCIPintervalAdd(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:690
void SCIPintervalSetEmpty(SCIP_INTERVAL *resultant)
Definition: intervalarith.c:447
SCIP_RETCODE SCIPgetLPColsData(SCIP *scip, SCIP_COL ***cols, int *ncols)
Definition: scip_lp.c:471
SCIP_RETCODE SCIPgetLPRowsData(SCIP *scip, SCIP_ROW ***rows, int *nrows)
Definition: scip_lp.c:570
SCIP_RETCODE SCIPgetLPBInvARow(SCIP *scip, int r, SCIP_Real *binvrow, SCIP_Real *coefs, int *inds, int *ninds)
Definition: scip_lp.c:785
SCIP_RETCODE SCIPgetLPBInvRow(SCIP *scip, int r, SCIP_Real *coefs, int *inds, int *ninds)
Definition: scip_lp.c:714
void SCIPnlhdlrSetCopyHdlr(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRCOPYHDLR((*copy)))
Definition: nlhdlr.c:76
void SCIPnlhdlrSetFreeExprData(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRFREEEXPRDATA((*freeexprdata)))
Definition: nlhdlr.c:98
void SCIPnlhdlrSetProp(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRINTEVAL((*inteval)), SCIP_DECL_NLHDLRREVERSEPROP((*reverseprop)))
Definition: nlhdlr.c:123
void SCIPnlhdlrSetFreeHdlrData(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRFREEHDLRDATA((*freehdlrdata)))
Definition: nlhdlr.c:87
void SCIPnlhdlrSetSepa(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRINITSEPA((*initsepa)), SCIP_DECL_NLHDLRENFO((*enfo)), SCIP_DECL_NLHDLRESTIMATE((*estimate)), SCIP_DECL_NLHDLREXITSEPA((*exitsepa)))
Definition: nlhdlr.c:136
SCIP_NLHDLR * SCIPfindNlhdlrNonlinear(SCIP_CONSHDLR *conshdlr, const char *name)
Definition: cons_nonlinear.c:15324
SCIP_RETCODE SCIPincludeNlhdlrNonlinear(SCIP *scip, SCIP_NLHDLR **nlhdlr, const char *name, const char *desc, int detectpriority, int enfopriority, SCIP_DECL_NLHDLRDETECT((*detect)), SCIP_DECL_NLHDLREVALAUX((*evalaux)), SCIP_NLHDLRDATA *nlhdlrdata)
Definition: cons_nonlinear.c:15245
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
SCIP_RETCODE SCIPcreateSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:180
SCIP_RETCODE SCIPprintTransSol(SCIP *scip, SCIP_SOL *sol, FILE *file, SCIP_Bool printzeros)
Definition: scip_sol.c:1709
SCIP_RETCODE SCIPsetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real val)
Definition: scip_sol.c:1073
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_RETCODE SCIPincludeTable(SCIP *scip, const char *name, const char *desc, SCIP_Bool active, SCIP_DECL_TABLECOPY((*tablecopy)), SCIP_DECL_TABLEFREE((*tablefree)), SCIP_DECL_TABLEINIT((*tableinit)), SCIP_DECL_TABLEEXIT((*tableexit)), SCIP_DECL_TABLEINITSOL((*tableinitsol)), SCIP_DECL_TABLEEXITSOL((*tableexitsol)), SCIP_DECL_TABLEOUTPUT((*tableoutput)), SCIP_TABLEDATA *tabledata, int position, SCIP_STAGE earlieststage)
Definition: scip_table.c:56
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1221
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
SCIP_VAR ** SCIProwprepGetVars(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:639
void SCIPmergeRowprepTerms(SCIP *scip, SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:1088
void SCIProwprepSetCoef(SCIP_ROWPREP *rowprep, int idx, SCIP_Real newcoef)
Definition: misc_rowprep.c:734
SCIP_Real * SCIProwprepGetCoefs(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:649
void SCIProwprepSetSidetype(SCIP_ROWPREP *rowprep, SCIP_SIDETYPE sidetype)
Definition: misc_rowprep.c:769
void SCIProwprepAddConstant(SCIP_ROWPREP *rowprep, SCIP_Real constant)
Definition: misc_rowprep.c:760
SCIP_RETCODE SCIPaddRowprepTerm(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_VAR *var, SCIP_Real coef)
Definition: misc_rowprep.c:913
SCIP_RETCODE SCIPgetRowprepRowCons(SCIP *scip, SCIP_ROW **row, SCIP_ROWPREP *rowprep, SCIP_CONS *cons)
Definition: misc_rowprep.c:1678
SCIP_RETCODE SCIPcreateRowprep(SCIP *scip, SCIP_ROWPREP **rowprep, SCIP_SIDETYPE sidetype, SCIP_Bool local)
Definition: misc_rowprep.c:563
void SCIProwprepAddSide(SCIP_ROWPREP *rowprep, SCIP_Real side)
Definition: misc_rowprep.c:746
SCIP_RETCODE SCIPcleanupRowprep(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Real minviol, SCIP_Real *viol, SCIP_Bool *success)
Definition: misc_rowprep.c:1201
void SCIPfreeRowprep(SCIP *scip, SCIP_ROWPREP **rowprep)
Definition: misc_rowprep.c:583
Definition: objbenders.h:44
static SCIP_Bool raysAreDependent(SCIP *scip, SCIP_Real *raycoefs1, int *rayidx1, int raynnonz1, SCIP_Real *raycoefs2, int *rayidx2, int raynnonz2, SCIP_Real *coef)
Definition: nlhdlr_quadratic.c:2739
static SCIP_DECL_NLHDLRCOPYHDLR(nlhdlrCopyhdlrQuadratic)
Definition: nlhdlr_quadratic.c:5035
static SCIP_RETCODE computeRestrictionToLine(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real sidefactor, SCIP_Real *raycoefs, int *rayidx, int raynnonz, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real kappa, SCIP_Real *apex, SCIP_Real *coefs2, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:1331
static SCIP_Real computeMaxBoundaryForBilinearProp(SCIP_Real a, SCIP_Real c, SCIP_Real x1, SCIP_Real x2)
Definition: nlhdlr_quadratic.c:3609
static SCIP_RETCODE setVarToNearestBound(SCIP *scip, SCIP_SOL *sol, SCIP_SOL *vertex, SCIP_VAR *var, SCIP_Real *factor, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:3092
static void computeVApexAndVRay(SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real *apex, SCIP_Real *raycoefs, int *rayidx, int raynnonz, SCIP_Real *vapex, SCIP_Real *vray)
Definition: nlhdlr_quadratic.c:1263
static void computeRangeForBilinearProp(SCIP_INTERVAL exprdom, SCIP_Real coef, SCIP_INTERVAL rhs, SCIP_INTERVAL *range)
Definition: nlhdlr_quadratic.c:3704
static SCIP_RETCODE computeIntercut(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, RAYS *rays, SCIP_Real sidefactor, SCIP_Bool iscase4, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real wzlp, SCIP_Real kappa, SCIP_ROWPREP *rowprep, SCIP_Real *interpoints, SCIP_SOL *sol, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:2455
static SCIP_RETCODE computeRestrictionToRay(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real sidefactor, SCIP_Bool iscase4, SCIP_Real *raycoefs, int *rayidx, int raynnonz, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real wzlp, SCIP_Real kappa, SCIP_Real *coefs1234a, SCIP_Real *coefs4b, SCIP_Real *coefscondition, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:1464
static SCIP_RETCODE findRho(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, RAYS *rays, int idx, SCIP_Real sidefactor, SCIP_Bool iscase4, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real wzlp, SCIP_Real kappa, SCIP_Real *interpoints, SCIP_Real *rho, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:2857
static SCIP_RETCODE createAndStoreSparseRays(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_VAR *auxvar, RAYS **raysptr, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:859
static SCIP_DECL_NLHDLRENFO(nlhdlrEnfoQuadratic)
Definition: nlhdlr_quadratic.c:4192
static SCIP_RETCODE insertRayEntry(SCIP *scip, RAYS *rays, SCIP_Real coef, int coefidx, int coefpos)
Definition: nlhdlr_quadratic.c:660
static void sparsifyIntercut(SCIP *scip, SCIP_ROWPREP *rowprep)
Definition: nlhdlr_quadratic.c:2402
static SCIP_RETCODE computeMonoidalStrengthCoef(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, int lppos, SCIP_Real *raycoefs, int *rayidx, int raynnonz, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real kappa, SCIP_Real *apex, SCIP_Real sidefactor, SCIP_Real *cutcoef, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:2327
static SCIP_Real findMonoidalQuadRoot(SCIP *scip, SCIP_Real a, SCIP_Real b, SCIP_Real c)
Definition: nlhdlr_quadratic.c:2172
static SCIP_RETCODE propagateBoundsQuadExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_Real sqrcoef, SCIP_INTERVAL b, SCIP_INTERVAL rhs, SCIP_Bool *infeasible, int *nreductions)
Definition: nlhdlr_quadratic.c:3522
static SCIP_RETCODE createBoundRays(SCIP *scip, RAYS **rays, int size)
Definition: nlhdlr_quadratic.c:618
static SCIP_DECL_NLHDLREVALAUX(nlhdlrEvalauxQuadratic)
Definition: nlhdlr_quadratic.c:4127
static SCIP_DECL_TABLEOUTPUT(tableOutputQuadratic)
Definition: nlhdlr_quadratic.c:184
static void combineRays(SCIP_Real *raycoefs1, int *rayidx1, int raynnonz1, SCIP_Real *raycoefs2, int *rayidx2, int raynnonz2, SCIP_Real *newraycoefs, int *newrayidx, int *newraynnonz, SCIP_Real coef1, SCIP_Real coef2)
Definition: nlhdlr_quadratic.c:2682
static SCIP_DECL_NLHDLRREVERSEPROP(nlhdlrReversepropQuadratic)
Definition: nlhdlr_quadratic.c:4710
static SCIP_Real computeEigenvecDotRay(SCIP_Real *eigenvec, int nquadvars, SCIP_Real *raycoefs, int *rayidx, int raynnonz)
Definition: nlhdlr_quadratic.c:1177
static SCIP_Bool isPropagableTerm(SCIP_EXPR *qexpr, int idx)
Definition: nlhdlr_quadratic.c:3504
static SCIP_Real computeWRayLinear(SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real sidefactor, SCIP_Real *raycoefs, int *rayidx, int raynnonz)
Definition: nlhdlr_quadratic.c:1206
static SCIP_RETCODE storeDenseTableauRow(SCIP *scip, SCIP_COL *col, int *basicvarpos2tableaurow, int nbasiccol, int raylength, SCIP_Real *binvrow, SCIP_Real *binvarow, SCIP_Real *tableaurows)
Definition: nlhdlr_quadratic.c:428
static SCIP_RETCODE addRowToCut(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_Real cutcoef, SCIP_ROW *row, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:262
static SCIP_Real computeIntersectionPoint(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_Bool iscase4, SCIP_Real *coefs1234a, SCIP_Real *coefs4b, SCIP_Real *coefscondition)
Definition: nlhdlr_quadratic.c:1923
static SCIP_Real isCase4a(SCIP_Real tsol, SCIP_Real *coefs4a, SCIP_Real *coefscondition)
Definition: nlhdlr_quadratic.c:1765
static SCIP_Real computeMaxForBilinearProp(SCIP_Real a, SCIP_Real c, SCIP_INTERVAL dom)
Definition: nlhdlr_quadratic.c:3637
static void constructLPPos2ConsPosMap(SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_VAR *auxvar, int *map)
Definition: nlhdlr_quadratic.c:692
static SCIP_DECL_NLHDLRINTEVAL(nlhdlrIntevalQuadratic)
Definition: nlhdlr_quadratic.c:4448
static SCIP_Real computeRoot(SCIP *scip, SCIP_Real *coefs)
Definition: nlhdlr_quadratic.c:1823
static SCIP_Bool isQuadConsViolated(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_VAR *auxvar, SCIP_SOL *sol, SCIP_Real sidefactor)
Definition: nlhdlr_quadratic.c:3220
static SCIP_Bool areCoefsNumericsGood(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_Real *coefs1234a, SCIP_Real *coefs4b, SCIP_Bool iscase4)
Definition: nlhdlr_quadratic.c:1990
static SCIP_DECL_NLHDLRDETECT(nlhdlrDetectQuadratic)
Definition: nlhdlr_quadratic.c:3854
static SCIP_RETCODE intercutsComputeCommonQuantities(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_VAR *auxvar, SCIP_Real sidefactor, SCIP_SOL *sol, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real *wzlp, SCIP_Real *kappa)
Definition: nlhdlr_quadratic.c:1058
static SCIP_Real evalPhiAtRay(SCIP_Real t, SCIP_Real a, SCIP_Real b, SCIP_Real c, SCIP_Real d, SCIP_Real e)
Definition: nlhdlr_quadratic.c:1701
static SCIP_RETCODE insertRayEntries(SCIP *scip, RAYS *rays, SCIP_Real *densetableaucols, int *rayentry2conspos, int raylength, int nray, int conspos, SCIP_Real factor, int *nnonz, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:735
static SCIP_RETCODE computeStrengthenedIntercut(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, RAYS *rays, SCIP_Real sidefactor, SCIP_Bool iscase4, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real wzlp, SCIP_Real kappa, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Bool *success, SCIP_Bool *strengthsuccess)
Definition: nlhdlr_quadratic.c:2976
static SCIP_DECL_NLHDLRFREEHDLRDATA(nlhdlrFreehdlrdataQuadratic)
Definition: nlhdlr_quadratic.c:5024
static void computeApex(SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real kappa, SCIP_Real sidefactor, SCIP_Real *apex, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:2261
static SCIP_RETCODE propagateBoundsLinExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_Real b, SCIP_INTERVAL rhs, SCIP_Bool *infeasible, int *nreductions)
Definition: nlhdlr_quadratic.c:3573
static int countBasicVars(SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_VAR *auxvar, SCIP_Bool *nozerostat)
Definition: nlhdlr_quadratic.c:349
static SCIP_RETCODE findVertexAndGetRays(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, SCIP_SOL *vertex, SCIP_VAR *auxvar, RAYS **raysptr, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:3137
static SCIP_RETCODE reversePropagateLinearExpr(SCIP *scip, SCIP_EXPR **linexprs, int nlinexprs, SCIP_Real *lincoefs, SCIP_Real constant, SCIP_INTERVAL rhs, SCIP_Bool *infeasible, int *nreductions)
Definition: nlhdlr_quadratic.c:3739
static SCIP_Bool isRayInStrip(SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *vapex, SCIP_Real *vray, SCIP_Real kappa, SCIP_Real sidefactor, SCIP_Real cutcoef)
Definition: nlhdlr_quadratic.c:2121
static void doBinarySearch(SCIP *scip, SCIP_Real a, SCIP_Real b, SCIP_Real c, SCIP_Real d, SCIP_Real e, SCIP_Real *sol)
Definition: nlhdlr_quadratic.c:1778
static SCIP_RETCODE storeDenseTableauRowsByColumns(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, int raylength, SCIP_VAR *auxvar, SCIP_Real *tableaurows, int *rayentry2conspos)
Definition: nlhdlr_quadratic.c:495
static SCIP_RETCODE computeMonoidalQuadCoefs(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *vapex, SCIP_Real *vray, SCIP_Real kappa, SCIP_Real sidefactor, SCIP_Real *a, SCIP_Real *b, SCIP_Real *c)
Definition: nlhdlr_quadratic.c:2071
#define TABLE_EARLIEST_STAGE_QUADRATIC
Definition: nlhdlr_quadratic.c:74
static SCIP_RETCODE constructBasicVars2TableauRowMap(SCIP *scip, int *map)
Definition: nlhdlr_quadratic.c:323
static SCIP_RETCODE rayInRecessionCone(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, RAYS *rays, int j, int i, SCIP_Real sidefactor, SCIP_Bool iscase4, SCIP_Real *vb, SCIP_Real *vzlp, SCIP_Real *wcoefs, SCIP_Real wzlp, SCIP_Real kappa, SCIP_Real alpha, SCIP_Bool *inreccone, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:2788
static SCIP_DECL_NLHDLRFREEEXPRDATA(nlhdlrFreeexprdataQuadratic)
Definition: nlhdlr_quadratic.c:3789
static SCIP_RETCODE generateIntercut(SCIP *scip, SCIP_EXPR *expr, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_ROWPREP *rowprep, SCIP_Bool overestimate, SCIP_Bool *success)
Definition: nlhdlr_quadratic.c:3304
static SCIP_RETCODE addColToCut(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Real cutcoef, SCIP_COL *col)
Definition: nlhdlr_quadratic.c:227
nonlinear handler to handle quadratic expressions
preparation of a linear inequality to become a SCIP_ROW
public functions of nonlinear handlers of nonlinear constraints
Definition: nlhdlr_quadratic.c:165
Definition: struct_lp.h:136
Definition: struct_cons.h:47
Definition: struct_cons.h:127
Definition: struct_expr.h:106
Definition: intervalarith.h:54
Definition: struct_nlhdlr.h:44
Definition: struct_tree.h:142
Definition: struct_misc.h:287
Definition: struct_lp.h:202
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_scip.h:70