Scippy

SCIP

Solving Constraint Integer Programs

primal.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file primal.c
26 * @ingroup OTHER_CFILES
27 * @brief methods for collecting primal CIP solutions and primal informations
28 * @author Tobias Achterberg
29 */
30
31/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
32
33#include <assert.h>
34
35#include "scip/def.h"
36#include "scip/set.h"
37#include "scip/stat.h"
38#include "scip/visual.h"
39#include "scip/event.h"
40#include "scip/lp.h"
41#include "scip/var.h"
42#include "scip/prob.h"
43#include "scip/sol.h"
44#include "scip/primal.h"
45#include "scip/tree.h"
46#include "scip/reopt.h"
47#include "scip/disp.h"
48#include "scip/struct_event.h"
49#include "scip/pub_message.h"
50#include "scip/pub_var.h"
52
53
54/*
55 * memory growing methods for dynamically allocated arrays
56 */
57
58/** ensures, that sols array can store at least num entries */
59static
61 SCIP_PRIMAL* primal, /**< primal data */
62 SCIP_SET* set, /**< global SCIP settings */
63 int num /**< minimum number of entries to store */
64 )
65{
66 assert(primal->nsols <= primal->solssize);
67
68 if( num > primal->solssize )
69 {
70 int newsize;
71
72 newsize = SCIPsetCalcMemGrowSize(set, num);
73 SCIP_ALLOC( BMSreallocMemoryArray(&primal->sols, newsize) );
74 primal->solssize = newsize;
75 }
76 assert(num <= primal->solssize);
77
78 return SCIP_OKAY;
79}
80
81/** ensures, that partialsols array can store at least num entries */
82static
84 SCIP_PRIMAL* primal, /**< primal data */
85 SCIP_SET* set, /**< global SCIP settings */
86 int num /**< minimum number of entries to store */
87 )
88{
89 assert(primal->npartialsols <= primal->partialsolssize);
90
91 if( num > primal->partialsolssize )
92 {
93 int newsize;
94
95 newsize = SCIPsetCalcMemGrowSize(set, num);
96 newsize = MIN(newsize, set->limit_maxorigsol);
97
98 SCIP_ALLOC( BMSreallocMemoryArray(&primal->partialsols, newsize) );
99 primal->partialsolssize = newsize;
100 }
101 assert(num <= primal->partialsolssize);
102
103 return SCIP_OKAY;
104}
105
106/** ensures, that existingsols array can store at least num entries */
107static
109 SCIP_PRIMAL* primal, /**< primal data */
110 SCIP_SET* set, /**< global SCIP settings */
111 int num /**< minimum number of entries to store */
112 )
113{
114 assert(primal->nexistingsols <= primal->existingsolssize);
115
116 if( num > primal->existingsolssize )
117 {
118 int newsize;
119
120 newsize = SCIPsetCalcMemGrowSize(set, num);
121 SCIP_ALLOC( BMSreallocMemoryArray(&primal->existingsols, newsize) );
122 primal->existingsolssize = newsize;
123 }
124 assert(num <= primal->existingsolssize);
125
126 return SCIP_OKAY;
127}
128
129/** creates primal data */
131 SCIP_PRIMAL** primal /**< pointer to primal data */
132 )
133{
134 assert(primal != NULL);
135
136 SCIP_ALLOC( BMSallocMemory(primal) );
137 (*primal)->sols = NULL;
138 (*primal)->partialsols = NULL;
139 (*primal)->existingsols = NULL;
140 (*primal)->currentsol = NULL;
141 (*primal)->primalray = NULL;
142 (*primal)->solssize = 0;
143 (*primal)->partialsolssize = 0;
144 (*primal)->nsols = 0;
145 (*primal)->npartialsols = 0;
146 (*primal)->existingsolssize = 0;
147 (*primal)->nexistingsols = 0;
148 (*primal)->nsolsfound = 0;
149 (*primal)->nlimsolsfound = 0;
150 (*primal)->nbestsolsfound = 0;
151 (*primal)->nlimbestsolsfound = 0;
152 (*primal)->upperbound = SCIP_INVALID;
153 (*primal)->cutoffbound = SCIP_INVALID;
154 (*primal)->updateviolations = TRUE;
155
156 return SCIP_OKAY;
157}
158
159/** frees primal data */
161 SCIP_PRIMAL** primal, /**< pointer to primal data */
162 BMS_BLKMEM* blkmem /**< block memory */
163 )
164{
165 int s;
166
167 assert(primal != NULL);
168 assert(*primal != NULL);
169
170 /* free temporary solution for storing current solution */
171 if( (*primal)->currentsol != NULL )
172 {
173 SCIP_CALL( SCIPsolFree(&(*primal)->currentsol, blkmem, *primal) );
174 }
175
176 /* free solution for storing primal ray */
177 if( (*primal)->primalray != NULL )
178 {
179 SCIP_CALL( SCIPsolFree(&(*primal)->primalray, blkmem, *primal) );
180 }
181
182 /* free feasible primal CIP solutions */
183 for( s = 0; s < (*primal)->nsols; ++s )
184 {
185 SCIP_CALL( SCIPsolFree(&(*primal)->sols[s], blkmem, *primal) );
186 }
187 /* free partial CIP solutions */
188 for( s = 0; s < (*primal)->npartialsols; ++s )
189 {
190 SCIP_CALL( SCIPsolFree(&(*primal)->partialsols[s], blkmem, *primal) );
191 }
192 assert((*primal)->nexistingsols == 0);
193
194 BMSfreeMemoryArrayNull(&(*primal)->sols);
195 BMSfreeMemoryArrayNull(&(*primal)->partialsols);
196 BMSfreeMemoryArrayNull(&(*primal)->existingsols);
197 BMSfreeMemory(primal);
198
199 return SCIP_OKAY;
200}
201
202/** clears primal data */
204 SCIP_PRIMAL** primal, /**< pointer to primal data */
205 BMS_BLKMEM* blkmem /**< block memory */
206 )
207{
208 int s;
209
210 assert(primal != NULL);
211 assert(*primal != NULL);
212
213 /* free temporary solution for storing current solution */
214 if( (*primal)->currentsol != NULL )
215 {
216 SCIP_CALL( SCIPsolFree(&(*primal)->currentsol, blkmem, *primal) );
217 }
218
219 /* free solution for storing primal ray */
220 if( (*primal)->primalray != NULL )
221 {
222 SCIP_CALL( SCIPsolFree(&(*primal)->primalray, blkmem, *primal) );
223 }
224
225 /* free feasible primal CIP solutions */
226 for( s = 0; s < (*primal)->nsols; ++s )
227 {
228 SCIP_CALL( SCIPsolFree(&(*primal)->sols[s], blkmem, *primal) );
229 }
230
231 (*primal)->currentsol = NULL;
232 (*primal)->primalray = NULL;
233 (*primal)->nsols = 0;
234 (*primal)->nsolsfound = 0;
235 (*primal)->nlimsolsfound = 0;
236 (*primal)->nbestsolsfound = 0;
237 (*primal)->nlimbestsolsfound = 0;
238 (*primal)->upperbound = SCIP_INVALID;
239 (*primal)->cutoffbound = SCIP_INVALID;
240 (*primal)->updateviolations = TRUE;
241
242 return SCIP_OKAY;
243}
244
245/** sorts primal solutions by objective value */
246static
248 SCIP_PRIMAL* primal, /**< primal data */
249 SCIP_SET* set, /**< global SCIP settings */
250 SCIP_PROB* origprob, /**< original problem */
251 SCIP_PROB* transprob /**< transformed problem */
252 )
253{
254 int i;
255
256 for( i = 1; i < primal->nsols; ++i )
257 {
258 SCIP_SOL* sol;
259 SCIP_Real objval;
260 int j;
261
262 sol = primal->sols[i];
263 objval = SCIPsolGetObj(sol, set, transprob, origprob);
264 for( j = i; j > 0 && objval < SCIPsolGetObj(primal->sols[j-1], set, transprob, origprob); --j )
265 primal->sols[j] = primal->sols[j-1];
266 primal->sols[j] = sol;
267 }
268
269 return;
270}
271
272/** sets the cutoff bound in primal data and in LP solver */
273static
275 SCIP_PRIMAL* primal, /**< primal data */
276 BMS_BLKMEM* blkmem, /**< block memory */
277 SCIP_SET* set, /**< global SCIP settings */
278 SCIP_STAT* stat, /**< problem statistics data */
279 SCIP_PROB* prob, /**< problem data */
280 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
281 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
282 SCIP_TREE* tree, /**< branch and bound tree */
283 SCIP_REOPT* reopt, /**< reoptimization data structure */
284 SCIP_LP* lp, /**< current LP data */
285 SCIP_Real cutoffbound /**< new cutoff bound */
286 )
287{
288 assert(primal != NULL);
289 assert(cutoffbound <= SCIPsetInfinity(set));
290 assert(primal->upperbound == SCIP_INVALID || SCIPsetIsLE(set, cutoffbound, primal->upperbound)); /*lint !e777*/
291 assert(!SCIPtreeInRepropagation(tree));
292
293 SCIPsetDebugMsg(set, "changing cutoff bound from %g to %g\n", primal->cutoffbound, cutoffbound);
294
295 primal->cutoffbound = MIN(cutoffbound, primal->upperbound); /* get rid of numerical issues */
296
297 /* set cut off value in LP solver */
298 SCIP_CALL( SCIPlpSetCutoffbound(lp, set, prob, primal->cutoffbound) );
299
300 /* cut off leaves of the tree */
301 SCIP_CALL( SCIPtreeCutoff(tree, reopt, blkmem, set, stat, eventfilter, eventqueue, lp, primal->cutoffbound) );
302
303 return SCIP_OKAY;
304}
305
306/** sets the cutoff bound in primal data and in LP solver */
308 SCIP_PRIMAL* primal, /**< primal data */
309 BMS_BLKMEM* blkmem, /**< block memory */
310 SCIP_SET* set, /**< global SCIP settings */
311 SCIP_STAT* stat, /**< problem statistics data */
312 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
313 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
314 SCIP_PROB* transprob, /**< transformed problem data */
315 SCIP_PROB* origprob, /**< original problem data */
316 SCIP_TREE* tree, /**< branch and bound tree */
317 SCIP_REOPT* reopt, /**< reoptimization data structure */
318 SCIP_LP* lp, /**< current LP data */
319 SCIP_Real cutoffbound, /**< new cutoff bound */
320 SCIP_Bool useforobjlimit /**< should the cutoff bound be used to update the objective limit, if
321 * better? */
322 )
323{
324 assert(primal != NULL);
325 assert(cutoffbound <= SCIPsetInfinity(set));
326 assert(cutoffbound <= primal->upperbound);
327 assert(transprob != NULL);
328 assert(origprob != NULL);
329
330 if( cutoffbound < primal->cutoffbound )
331 {
332 if( useforobjlimit )
333 {
334 SCIP_Real objval;
335
336 objval = SCIPprobExternObjval(transprob, origprob, set, cutoffbound);
337
338 if( objval < SCIPprobGetObjlim(origprob, set) )
339 {
340 SCIPsetDebugMsg(set, "changing cutoff bound from %g to %g changes objective limit from %g to %g\n",
341 primal->cutoffbound, cutoffbound, SCIPprobGetObjlim(origprob, set), objval);
342 SCIPprobSetObjlim(origprob, objval);
343 SCIPprobSetObjlim(transprob, objval);
344 }
345 }
346
347 /* update cutoff bound */
348 SCIP_CALL( primalSetCutoffbound(primal, blkmem, set, stat, transprob, eventfilter, eventqueue, tree, reopt, lp, cutoffbound) );
349 }
350 else if( cutoffbound > primal->cutoffbound )
351 {
352 SCIPerrorMessage("invalid increase in cutoff bound\n");
353 return SCIP_INVALIDDATA;
354 }
355
356 return SCIP_OKAY;
357}
358
359/** sets upper bound in primal data and in LP solver */
360static
362 SCIP_PRIMAL* primal, /**< primal data */
363 BMS_BLKMEM* blkmem, /**< block memory */
364 SCIP_SET* set, /**< global SCIP settings */
365 SCIP_STAT* stat, /**< problem statistics data */
366 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
367 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
368 SCIP_PROB* prob, /**< transformed problem after presolve */
369 SCIP_TREE* tree, /**< branch and bound tree */
370 SCIP_REOPT* reopt, /**< reoptimization data structure */
371 SCIP_LP* lp, /**< current LP data */
372 SCIP_Real upperbound /**< new upper bound */
373 )
374{
375 SCIP_Real cutoffbound;
376
377 assert(primal != NULL);
378 assert(stat != NULL);
379 assert(upperbound <= SCIPsetInfinity(set));
380 assert(upperbound <= primal->upperbound || stat->nnodes == 0);
381
382 SCIPsetDebugMsg(set, "changing upper bound from %g to %g\n", primal->upperbound, upperbound);
383
384 primal->upperbound = upperbound;
385
386 /* if objective value is always integral, the cutoff bound can be reduced to nearly the previous integer number */
387 if( SCIPprobIsObjIntegral(prob) && !SCIPsetIsInfinity(set, upperbound) )
388 {
389 SCIP_Real delta;
390
392
393 cutoffbound = SCIPsetFeasCeil(set, upperbound) - (1.0 - delta);
394 cutoffbound = MIN(cutoffbound, upperbound); /* SCIPsetFeasCeil() can increase bound by almost 1.0 due to numerics
395 * and very large upperbound value */
396 }
397 else
398 cutoffbound = upperbound;
399
400 /* update cutoff bound */
401 if( cutoffbound < primal->cutoffbound )
402 {
403 SCIP_CALL( primalSetCutoffbound(primal, blkmem, set, stat, prob, eventfilter, eventqueue, tree, reopt, lp, cutoffbound) );
404 }
405
406 /* update upper bound in visualization output */
407 if( SCIPtreeGetCurrentDepth(tree) >= 0 )
408 {
409 SCIPvisualUpperbound(stat->visual, set, stat, primal->upperbound);
410 }
411
412 return SCIP_OKAY;
413}
414
415/** sets upper bound in primal data and in LP solver */
417 SCIP_PRIMAL* primal, /**< primal data */
418 BMS_BLKMEM* blkmem, /**< block memory */
419 SCIP_SET* set, /**< global SCIP settings */
420 SCIP_STAT* stat, /**< problem statistics data */
421 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
422 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
423 SCIP_PROB* prob, /**< transformed problem after presolve */
424 SCIP_TREE* tree, /**< branch and bound tree */
425 SCIP_REOPT* reopt, /**< reoptimization data structure */
426 SCIP_LP* lp, /**< current LP data */
427 SCIP_Real upperbound /**< new upper bound */
428 )
429{
430 assert(primal != NULL);
431 assert(upperbound <= SCIPsetInfinity(set));
432
433 if( upperbound < primal->upperbound )
434 {
435 /* update primal bound */
436 SCIP_CALL( primalSetUpperbound(primal, blkmem, set, stat, eventfilter, eventqueue, prob, tree, reopt, lp, upperbound) );
437 }
438 else if( upperbound > primal->upperbound )
439 {
440 SCIPerrorMessage("invalid increase in upper bound\n");
441 return SCIP_INVALIDDATA;
442 }
443
444 return SCIP_OKAY;
445}
446
447/** updates upper bound and cutoff bound in primal data after a tightening of the problem's objective limit */
449 SCIP_PRIMAL* primal, /**< primal data */
450 BMS_BLKMEM* blkmem, /**< block memory */
451 SCIP_SET* set, /**< global SCIP settings */
452 SCIP_STAT* stat, /**< problem statistics data */
453 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
454 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
455 SCIP_PROB* transprob, /**< transformed problem data */
456 SCIP_PROB* origprob, /**< original problem data */
457 SCIP_TREE* tree, /**< branch and bound tree */
458 SCIP_REOPT* reopt, /**< reoptimization data structure */
459 SCIP_LP* lp /**< current LP data */
460 )
461{
462 SCIP_Real objlimit;
463 SCIP_Real inf;
464
465 assert(primal != NULL);
466
467 /* get internal objective limit */
468 objlimit = SCIPprobInternObjval(transprob, origprob, set, SCIPprobGetObjlim(origprob, set));
469 inf = SCIPsetInfinity(set);
470 objlimit = MIN(objlimit, inf);
471
472 /* update the cutoff bound */
473 if( objlimit < primal->cutoffbound )
474 {
475 SCIP_CALL( primalSetCutoffbound(primal, blkmem, set, stat, transprob, eventfilter, eventqueue, tree, reopt, lp, objlimit) );
476 }
477
478 /* set new upper bound (and decrease cutoff bound, if objective value is always integral) */
479 if( objlimit < primal->upperbound )
480 {
481 SCIP_CALL( primalSetUpperbound(primal, blkmem, set, stat, eventfilter, eventqueue, transprob, tree, reopt, lp, objlimit) );
482 }
483
484 return SCIP_OKAY;
485}
486
487/** recalculates upper bound and cutoff bound in primal data after a change of the problem's objective offset */
489 SCIP_PRIMAL* primal, /**< primal data */
490 BMS_BLKMEM* blkmem, /**< block memory */
491 SCIP_SET* set, /**< global SCIP settings */
492 SCIP_STAT* stat, /**< problem statistics data */
493 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
494 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
495 SCIP_PROB* transprob, /**< tranformed problem data */
496 SCIP_PROB* origprob, /**< original problem data */
497 SCIP_TREE* tree, /**< branch and bound tree */
498 SCIP_REOPT* reopt, /**< reoptimization data structure */
499 SCIP_LP* lp /**< current LP data */
500 )
501{
502 SCIP_Real upperbound;
503 SCIP_Real inf;
504
505 assert(primal != NULL);
507
508 /* recalculate internal objective limit */
509 upperbound = SCIPprobInternObjval(transprob, origprob, set, SCIPprobGetObjlim(origprob, set));
510 inf = SCIPsetInfinity(set);
511 upperbound = MIN(upperbound, inf);
512
513 /* resort current primal solutions */
514 sortPrimalSols(primal, set, origprob, transprob);
515
516 /* compare objective limit to currently best solution */
517 if( primal->nsols > 0 )
518 {
519 SCIP_Real obj;
520
521 assert(SCIPsolIsOriginal(primal->sols[0]));
522 obj = SCIPsolGetObj(primal->sols[0], set, transprob, origprob);
523
524 upperbound = MIN(upperbound, obj);
525 }
526
527 /* invalidate old upper bound */
528 SCIP_CALL( primalSetUpperbound(primal, blkmem, set, stat, eventfilter, eventqueue, transprob, tree, reopt, lp, SCIPsetInfinity(set)) );
529
530 /* reset the cutoff bound
531 *
532 * @note we might need to relax the bound since in presolving the objective correction of an
533 * aggregation is still in progress
534 */
535 SCIP_CALL( primalSetCutoffbound(primal, blkmem, set, stat, transprob, eventfilter, eventqueue, tree, reopt, lp, upperbound) );
536
537 /* set new upper bound (and decrease cutoff bound, if objective value is always integral) */
538 SCIP_CALL( primalSetUpperbound(primal, blkmem, set, stat, eventfilter, eventqueue, transprob, tree, reopt, lp, upperbound) );
539
540 return SCIP_OKAY;
541}
542
543/** adds additional objective offset in original space to all existing solution (in original space) */
545 SCIP_PRIMAL* primal, /**< primal data */
546 SCIP_SET* set, /**< global SCIP settings */
547 SCIP_Real addval /**< additional objective offset in original space */
548 )
549{
550 int i;
551
552 assert(primal != NULL);
553 assert(set != NULL);
555
556#ifndef NDEBUG
557 assert(primal->nsols == 0 || SCIPsolGetOrigin(primal->sols[0]) == SCIP_SOLORIGIN_ORIGINAL);
558
559 /* check current order of primal solutions */
560 for( i = 1; i < primal->nsols; ++i )
561 {
562 assert(SCIPsolGetOrigin(primal->sols[i]) == SCIP_SOLORIGIN_ORIGINAL);
563 assert(SCIPsetIsLE(set, SCIPsolGetOrigObj(primal->sols[i-1]), SCIPsolGetOrigObj(primal->sols[i])));
564 }
565#endif
566
567 /* check current order of primal solutions */
568 for( i = 0; i < primal->nexistingsols; ++i )
569 {
570 assert(primal->existingsols[i] != NULL);
571 SCIPsolOrigAddObjval(primal->existingsols[i], addval);
572 }
573}
574
575/** returns whether the current primal bound is justified with a feasible primal solution; if not, the primal bound
576 * was set from the user as objective limit
577 */
579 SCIP_PRIMAL* primal, /**< primal data */
580 SCIP_SET* set, /**< global SCIP settings */
581 SCIP_PROB* transprob, /**< tranformed problem data */
582 SCIP_PROB* origprob /**< original problem data */
583 )
584{
585 assert(primal != NULL);
586
587 return (primal->nsols > 0 && SCIPsetIsEQ(set, primal->upperbound, SCIPsolGetObj(primal->sols[0], set, transprob, origprob)));
588}
589
590/** returns the primal ray thats proves unboundedness */
592 SCIP_PRIMAL* primal /**< primal data */
593 )
594{
595 assert(primal != NULL);
596
597 return primal->primalray;
598}
599
600/** update the primal ray thats proves unboundedness */
602 SCIP_PRIMAL* primal, /**< primal data */
603 SCIP_SET* set, /**< global SCIP settings */
604 SCIP_STAT* stat, /**< dynamic SCIP statistics */
605 SCIP_SOL* primalray, /**< the new primal ray */
606 BMS_BLKMEM* blkmem /**< block memory */
607 )
608{
609 assert(primal != NULL);
610 assert(set != NULL);
611 assert(stat != NULL);
612 assert(primalray != NULL);
613 assert(blkmem != NULL);
614
615 /* clear previously stored primal ray, if any */
616 if( primal->primalray != NULL )
617 {
618 SCIP_CALL( SCIPsolFree(&primal->primalray, blkmem, primal) );
619 }
620
621 assert(primal->primalray == NULL);
622
623 SCIP_CALL( SCIPsolCopy(&primal->primalray, blkmem, set, stat, primal, primalray) );
624
625 return SCIP_OKAY;
626}
627
628/** adds primal solution to solution storage at given position */
629static
631 SCIP_PRIMAL* primal, /**< primal data */
632 BMS_BLKMEM* blkmem, /**< block memory */
633 SCIP_SET* set, /**< global SCIP settings */
634 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
635 SCIP_STAT* stat, /**< problem statistics data */
636 SCIP_PROB* origprob, /**< original problem */
637 SCIP_PROB* transprob, /**< transformed problem after presolve */
638 SCIP_TREE* tree, /**< branch and bound tree */
639 SCIP_REOPT* reopt, /**< reoptimization data structure */
640 SCIP_LP* lp, /**< current LP data */
641 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
642 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
643 SCIP_SOL** solptr, /**< pointer to primal CIP solution */
644 int insertpos, /**< position in solution storage to add solution to */
645 SCIP_Bool replace /**< should the solution at insertpos be replaced by the new solution? */
646 )
647{
648 SCIP_SOL* sol;
649 /* cppcheck-suppress unassignedVariable */
650 SCIP_EVENT event;
651 SCIP_Real obj;
652 int pos;
653
654 assert(primal != NULL);
655 assert(set != NULL);
656 assert(solptr != NULL);
657 assert(stat != NULL);
658 assert(transprob != NULL);
659 assert(origprob != NULL);
660 assert(0 <= insertpos && insertpos < set->limit_maxsol);
661 assert(tree == NULL || !SCIPtreeInRepropagation(tree));
662
663 sol = *solptr;
664 assert(sol != NULL);
665
666 /* if the solution is added during presolving and it is not defined on original variables,
667 * presolving operations will destroy its validity, so we retransform it to the original space
668 */
669 if( set->stage < SCIP_STAGE_PRESOLVED && !SCIPsolIsOriginal(sol) )
670 {
671 SCIP_Bool hasinfval;
672
673 SCIP_CALL( SCIPsolUnlink(sol, set, transprob) );
674 SCIP_CALL( SCIPsolRetransform(sol, set, stat, origprob, transprob, &hasinfval) );
675 }
676
677 obj = SCIPsolGetObj(sol, set, transprob, origprob);
678
679 SCIPsetDebugMsg(set, "insert primal solution %p with obj %g at position %d (replace=%u):\n",
680 (void*)sol, obj, insertpos, replace);
681
682 /* make sure that the primal bound is at least the lower bound */
684 {
685 if( origprob->objsense == SCIP_OBJSENSE_MINIMIZE )
686 {
687 SCIPmessagePrintWarning(messagehdlr, "Dual bound %g is larger than the objective of the primal solution %g. The solution might not be optimal.\n",
688 SCIPprobExternObjval(transprob, origprob, set, SCIPgetLowerbound(set->scip)), SCIPprobExternObjval(transprob, origprob, set, obj));
689 }
690 else
691 {
692 SCIPmessagePrintWarning(messagehdlr, "Dual bound %g is smaller than the objective of the primal solution %g. The solution might not be optimal.\n",
693 SCIPprobExternObjval(transprob, origprob, set, SCIPgetLowerbound(set->scip)), SCIPprobExternObjval(transprob, origprob, set, obj));
694 }
695#ifdef WITH_DEBUG_SOLUTION
696 SCIPABORT();
697#endif
698 }
699
700 SCIPdebug( SCIP_CALL( SCIPsolPrint(sol, set, messagehdlr, stat, transprob, NULL, NULL, FALSE, FALSE) ) );
701
702#if 0 /* this is not a valid debug check, but can be used to track down numerical troubles */
703#ifndef NDEBUG
704 /* check solution again completely
705 * it fail for different reasons:
706 * - in the LP solver, the feasibility tolerance is a relative measure against the row's norm
707 * - in SCIP, the feasibility tolerance is a relative measure against the row's rhs/lhs
708 * - the rhs/lhs of a row might drastically change during presolving when variables are fixed or (multi-)aggregated
709 */
710 if( !SCIPsolIsOriginal(sol) )
711 {
712 SCIP_Bool feasible;
713
714 SCIP_CALL( SCIPsolCheck(sol, set, messagehdlr, blkmem, stat, transprob, TRUE, TRUE, TRUE, TRUE, &feasible) );
715
716 if( !feasible )
717 {
718 SCIPerrorMessage("infeasible solution accepted:\n");
719 SCIP_CALL( SCIPsolPrint(sol, set, messagehdlr, stat, origprob, transprob, NULL, FALSE, FALSE) );
720 }
721 assert(feasible);
722 }
723#endif
724#endif
725
726 /* completely fill the solution's own value array to unlink it from the LP or pseudo solution */
727 SCIP_CALL( SCIPsolUnlink(sol, set, transprob) );
728
729 /* allocate memory for solution storage */
730 SCIP_CALL( ensureSolsSize(primal, set, set->limit_maxsol) );
731
732 /* if set->limit_maxsol was decreased in the meantime, free all solutions exceeding the limit */
733 for( pos = set->limit_maxsol; pos < primal->nsols; ++pos )
734 {
735 SCIP_CALL( SCIPsolFree(&primal->sols[pos], blkmem, primal) );
736 }
737 primal->nsols = MIN(primal->nsols, set->limit_maxsol);
738
739 /* if the solution should replace an existing one, free this solution, otherwise,
740 * free the last solution if the solution storage is full;
741 */
742 if( replace )
743 {
744 SCIP_CALL( SCIPsolTransform(primal->sols[insertpos], solptr, blkmem, set, primal) );
745 sol = primal->sols[insertpos];
746 }
747 else
748 {
749 if( primal->nsols == set->limit_maxsol )
750 {
751 SCIP_CALL( SCIPsolFree(&primal->sols[set->limit_maxsol - 1], blkmem, primal) );
752 }
753 else
754 {
755 primal->nsols = primal->nsols + 1;
756 assert(primal->nsols <= set->limit_maxsol);
757 }
758
759 /* move all solutions with worse objective value than the new solution */
760 for( pos = primal->nsols-1; pos > insertpos; --pos )
761 primal->sols[pos] = primal->sols[pos-1];
762
763 /* insert solution at correct position */
764 assert(0 <= insertpos && insertpos < primal->nsols);
765 primal->sols[insertpos] = sol;
766 primal->nsolsfound++;
767
768 /* check if solution is better than objective limit */
769 if( SCIPsetIsFeasLE(set, obj, SCIPprobInternObjval(transprob, origprob, set, SCIPprobGetObjlim(origprob, set))) )
770 primal->nlimsolsfound++;
771 }
772
773 /* if its the first primal solution, store the relevant statistics */
774 if( primal->nsolsfound == 1 )
775 {
776 SCIP_Real primalsolval;
777
780 stat->firstprimalheur = SCIPsolGetHeur(sol);
781 stat->firstprimaltime = SCIPsolGetTime(sol);
783
784 primalsolval = obj;
785 stat->firstprimalbound = SCIPprobExternObjval(transprob, origprob, set, primalsolval);
786
787 SCIPsetDebugMsg(set, "First Solution stored in problem specific statistics.\n");
788 SCIPsetDebugMsg(set, "-> %" SCIP_LONGINT_FORMAT " nodes, %d runs, %.2g time, %d depth, %.15g objective\n", stat->nnodesbeforefirst, stat->nrunsbeforefirst,
790 }
791
792 SCIPsetDebugMsg(set, " -> stored at position %d of %d solutions, found %" SCIP_LONGINT_FORMAT " solutions\n",
793 insertpos, primal->nsols, primal->nsolsfound);
794
795 /* update the solution value sums in variables */
796 if( !SCIPsolIsOriginal(sol) )
797 {
798 SCIPsolUpdateVarsum(sol, set, stat, transprob,
799 (SCIP_Real)(primal->nsols - insertpos)/(SCIP_Real)(2.0*primal->nsols - 1.0));
800 }
801
802 /* change color of node in visualization output */
803 SCIPvisualFoundSolution(stat->visual, set, stat, SCIPtreeGetCurrentNode(tree), insertpos == 0 ? TRUE : FALSE, sol);
804
805 /* check, if the global upper bound has to be updated */
806 if( obj < primal->cutoffbound && insertpos == 0 )
807 {
808 /* update the upper bound */
809 SCIP_CALL( SCIPprimalSetUpperbound(primal, blkmem, set, stat, eventfilter, eventqueue, transprob, tree, reopt, lp, obj) );
810
811 /* issue BESTSOLFOUND event */
813 primal->nbestsolsfound++;
814 stat->bestsolnode = stat->nnodes;
815 }
816 else
817 {
818 /* issue POORSOLFOUND event */
820 }
821 SCIP_CALL( SCIPeventChgSol(&event, sol) );
822 SCIP_CALL( SCIPeventProcess(&event, set, NULL, NULL, NULL, eventfilter) );
823
824 /* display node information line */
825 if( insertpos == 0 && !replace && set->stage >= SCIP_STAGE_SOLVING )
826 {
827 SCIP_CALL( SCIPdispPrintLine(set, messagehdlr, stat, NULL, TRUE, TRUE) );
828 }
829
830 /* if an original solution was added during solving, try to transfer it to the transformed space */
831 if( SCIPsolIsOriginal(sol) && SCIPsetGetStage(set) == SCIP_STAGE_SOLVING && set->misc_transorigsols )
832 {
833 SCIP_Bool added;
834
835 SCIP_CALL( SCIPprimalTransformSol(primal, sol, blkmem, set, messagehdlr, stat, origprob, transprob, tree, reopt,
836 lp, eventqueue, eventfilter, NULL, NULL, 0, &added) );
837
838 SCIPsetDebugMsg(set, "original solution %p was successfully transferred to the transformed problem space\n",
839 (void*)sol);
840 } /*lint !e438*/
841
842 return SCIP_OKAY;
843}
844
845/** adds primal solution to solution storage at given position */
846static
848 SCIP_PRIMAL* primal, /**< primal data */
849 BMS_BLKMEM* blkmem, /**< block memory */
850 SCIP_SET* set, /**< global SCIP settings */
851 SCIP_PROB* prob, /**< original problem data */
852 SCIP_SOL* sol, /**< primal CIP solution */
853 int insertpos /**< position in solution storage to add solution to */
854 )
855{
856 int pos;
857
858 assert(primal != NULL);
859 assert(set != NULL);
860 assert(prob != NULL);
861 assert(sol != NULL);
862 assert(0 <= insertpos && insertpos < set->limit_maxorigsol);
863 assert(!set->reopt_enable);
864
865 SCIPsetDebugMsg(set, "insert primal solution candidate %p with obj %g at position %d:\n", (void*)sol, SCIPsolGetOrigObj(sol), insertpos);
866
867 /* allocate memory for solution storage */
868 SCIP_CALL( ensureSolsSize(primal, set, set->limit_maxorigsol) );
869
870 /* if the solution storage is full, free the last solution(s)
871 * more than one solution may be freed, if set->limit_maxorigsol was decreased in the meantime
872 */
873 for( pos = set->limit_maxorigsol-1; pos < primal->nsols; ++pos )
874 {
875 SCIP_CALL( SCIPsolFree(&primal->sols[pos], blkmem, primal) );
876 }
877
878 /* insert solution at correct position */
879 primal->nsols = MIN(primal->nsols+1, set->limit_maxorigsol);
880 for( pos = primal->nsols-1; pos > insertpos; --pos )
881 primal->sols[pos] = primal->sols[pos-1];
882
883 assert(0 <= insertpos && insertpos < primal->nsols);
884 primal->sols[insertpos] = sol;
885 primal->nsolsfound++;
886
887 /* check if solution is better than objective limit */
889 primal->nlimsolsfound++;
890
891 SCIPsetDebugMsg(set, " -> stored at position %d of %d solutions, found %" SCIP_LONGINT_FORMAT " solutions\n",
892 insertpos, primal->nsols, primal->nsolsfound);
893
894 return SCIP_OKAY;
895}
896
897/** adds primal solution to solution storage */
898static
900 SCIP_PRIMAL* primal, /**< primal data */
901 SCIP_SET* set, /**< global SCIP settings */
902 SCIP_PROB* prob, /**< original problem data */
903 SCIP_SOL* sol /**< primal CIP solution */
904 )
905{ /*lint --e{715}*/
906 assert(primal != NULL);
907 assert(set != NULL);
908 assert(prob != NULL);
909 assert(sol != NULL);
910
911 if( primal->npartialsols >= set->limit_maxorigsol )
912 {
913 SCIPerrorMessage("Cannot add partial solution to storage: limit reached.\n");
914 return SCIP_INVALIDCALL;
915 }
916
917 SCIPsetDebugMsg(set, "insert partial solution candidate %p:\n", (void*)sol);
918
919 /* allocate memory for solution storage */
920 SCIP_CALL( ensurePartialsolsSize(primal, set, primal->npartialsols+1) );
921
922 primal->partialsols[primal->npartialsols] = sol;
923 ++primal->npartialsols;
924
925 return SCIP_OKAY;
926}
927
928/** uses binary search to find position in solution storage */
929static
931 SCIP_PRIMAL* primal, /**< primal data */
932 SCIP_SET* set, /**< global SCIP settings */
933 SCIP_PROB* transprob, /**< tranformed problem data */
934 SCIP_PROB* origprob, /**< original problem data */
935 SCIP_SOL* sol /**< primal solution to search position for */
936 )
937{
938 SCIP_SOL** sols;
939 SCIP_Real obj;
940 SCIP_Real middleobj;
941 int left;
942 int right;
943 int middle;
944
945 assert(primal != NULL);
946
947 obj = SCIPsolGetObj(sol, set, transprob, origprob);
948 sols = primal->sols;
949
950 left = -1;
951 right = primal->nsols;
952 while( left < right-1 )
953 {
954 middle = (left+right)/2;
955 assert(left < middle && middle < right);
956 assert(0 <= middle && middle < primal->nsols);
957
958 middleobj = SCIPsolGetObj(sols[middle], set, transprob, origprob);
959
960 if( obj < middleobj )
961 right = middle;
962 else
963 left = middle;
964 }
965 assert(left == right-1);
966
967 /* prefer solutions that live in the transformed space */
968 if( !SCIPsolIsOriginal(sol) )
969 {
970 while( right > 0 && SCIPsolIsOriginal(sols[right-1])
971 && SCIPsetIsEQ(set, SCIPsolGetObj(sols[right-1], set, transprob, origprob), obj) )
972 --right;
973 }
974
975 return right;
976}
977
978/** uses binary search to find position in solution storage */
979static
981 SCIP_PRIMAL* primal, /**< primal data */
982 SCIP_SOL* sol /**< primal solution to search position for */
983 )
984{
985 SCIP_Real obj;
986 SCIP_Real middleobj;
987 int left;
988 int right;
989 int middle;
990
991 assert(primal != NULL);
992
993 obj = SCIPsolGetOrigObj(sol);
994
995 left = -1;
996 right = primal->nsols;
997 while( left < right-1 )
998 {
999 middle = (left+right)/2;
1000 assert(left < middle && middle < right);
1001 assert(0 <= middle && middle < primal->nsols);
1002 middleobj = SCIPsolGetOrigObj(primal->sols[middle]);
1003 if( obj < middleobj )
1004 right = middle;
1005 else
1006 left = middle;
1007 }
1008 assert(left == right-1);
1009
1010 return right;
1011}
1012
1013/** returns whether the given primal solution is already existent in the solution storage */
1014static
1016 SCIP_PRIMAL* primal, /**< primal data */
1017 SCIP_SET* set, /**< global SCIP settings */
1018 SCIP_STAT* stat, /**< problem statistics data */
1019 SCIP_PROB* origprob, /**< original problem */
1020 SCIP_PROB* transprob, /**< transformed problem after presolve */
1021 SCIP_SOL* sol, /**< primal solution to search position for */
1022 int* insertpos, /**< pointer to insertion position returned by primalSearchSolPos(); the
1023 * position might be changed if an existing solution should be replaced */
1024 SCIP_Bool* replace /**< pointer to store whether the solution at insertpos should be replaced */
1025 )
1026{
1027 SCIP_Real obj;
1028 int i;
1029
1030 assert(primal != NULL);
1031 assert(insertpos != NULL);
1032 assert(replace != NULL);
1033 assert(0 <= (*insertpos) && (*insertpos) <= primal->nsols);
1034
1035 obj = SCIPsolGetObj(sol, set, transprob, origprob);
1036
1037 assert(primal->sols != NULL || primal->nsols == 0);
1038 assert(primal->sols != NULL || (*insertpos) == 0);
1039
1040 /* search in the better solutions */
1041 for( i = (*insertpos)-1; i >= 0; --i )
1042 {
1043 SCIP_Real solobj;
1044
1045 solobj = SCIPsolGetObj(primal->sols[i], set, transprob, origprob);
1046
1047 /* due to transferring the objective value of transformed solutions to the original space, small numerical errors might occur
1048 * which can lead to SCIPsetIsLE() failing in case of high absolute numbers
1049 */
1050 assert(SCIPsetIsLE(set, solobj, obj) || (REALABS(obj) > 1e+13 * SCIPsetEpsilon(set) && SCIPsetIsFeasLE(set, solobj, obj)));
1051
1052 if( SCIPsetIsLT(set, solobj, obj) )
1053 break;
1054
1055 if( SCIPsolsAreEqual(sol, primal->sols[i], set, stat, origprob, transprob) )
1056 {
1057 if( set->stage >= SCIP_STAGE_PRESOLVED && SCIPsolIsOriginal(primal->sols[i]) && !SCIPsolIsOriginal(sol) )
1058 {
1059 (*insertpos) = i;
1060 (*replace) = TRUE;
1061 }
1062 return TRUE;
1063 }
1064 }
1065
1066 /* search in the worse solutions */
1067 for( i = (*insertpos); i < primal->nsols; ++i )
1068 {
1069 SCIP_Real solobj;
1070
1071 solobj = SCIPsolGetObj(primal->sols[i], set, transprob, origprob);
1072
1073 /* due to transferring the objective value of transformed solutions to the original space, small numerical errors might occur
1074 * which can lead to SCIPsetIsLE() failing in case of high absolute numbers
1075 */
1076 assert( SCIPsetIsGE(set, solobj, obj) || (REALABS(obj) > 1e+13 * SCIPsetEpsilon(set) && SCIPsetIsFeasGE(set, solobj, obj)));
1077
1078 if( SCIPsetIsGT(set, solobj, obj) )
1079 break;
1080
1081 if( SCIPsolsAreEqual(sol, primal->sols[i], set, stat, origprob, transprob) )
1082 {
1083 if( set->stage >= SCIP_STAGE_PRESOLVED && SCIPsolIsOriginal(primal->sols[i]) && !SCIPsolIsOriginal(sol) )
1084 {
1085 (*insertpos) = i;
1086 (*replace) = TRUE;
1087 }
1088 return TRUE;
1089 }
1090 }
1091
1092 return FALSE;
1093}
1094
1095/** returns whether the given primal solution is already existent in the original solution candidate storage */
1096static
1098 SCIP_PRIMAL* primal, /**< primal data */
1099 SCIP_SET* set, /**< global SCIP settings */
1100 SCIP_STAT* stat, /**< problem statistics data */
1101 SCIP_PROB* prob, /**< original problem */
1102 SCIP_SOL* sol, /**< primal solution to search position for */
1103 int insertpos /**< insertion position returned by primalSearchOrigSolPos() */
1104 )
1105{
1106 SCIP_Real obj;
1107 int i;
1108
1109 assert(primal != NULL);
1110 assert(0 <= insertpos && insertpos <= primal->nsols);
1111
1112 obj = SCIPsolGetOrigObj(sol);
1113
1114 /* search in the better solutions */
1115 for( i = insertpos-1; i >= 0; --i )
1116 {
1117 SCIP_Real solobj;
1118
1119 solobj = SCIPsolGetOrigObj(primal->sols[i]);
1120 assert( SCIPsetIsLE(set, solobj, obj) );
1121
1122 if( SCIPsetIsLT(set, solobj, obj) )
1123 break;
1124
1125 if( SCIPsolsAreEqual(sol, primal->sols[i], set, stat, prob, NULL) )
1126 return TRUE;
1127 }
1128
1129 /* search in the worse solutions */
1130 for( i = insertpos; i < primal->nsols; ++i )
1131 {
1132 SCIP_Real solobj;
1133
1134 solobj = SCIPsolGetOrigObj(primal->sols[i]);
1135 assert( SCIPsetIsGE(set, solobj, obj) );
1136
1137 if( SCIPsetIsGT(set, solobj, obj) )
1138 break;
1139
1140 if( SCIPsolsAreEqual(sol, primal->sols[i], set, stat, prob, NULL) )
1141 return TRUE;
1142 }
1143
1144 return FALSE;
1145}
1146
1147/** check if we are willing to check the solution for feasibility */
1148static
1150 SCIP_PRIMAL* primal, /**< primal data */
1151 SCIP_SET* set, /**< global SCIP settings */
1152 SCIP_STAT* stat, /**< problem statistics data */
1153 SCIP_PROB* origprob, /**< original problem */
1154 SCIP_PROB* transprob, /**< transformed problem after presolve */
1155 SCIP_SOL* sol, /**< primal CIP solution */
1156 int* insertpos, /**< pointer to store the insert position of that solution */
1157 SCIP_Bool* replace /**< pointer to store whether the solution at insertpos should be replaced
1158 * (e.g., because it lives in the original space) */
1159 )
1160{
1161 SCIP_Real obj;
1162
1163 obj = SCIPsolGetObj(sol, set, transprob, origprob);
1164
1165 /* check if we are willing to check worse solutions; a solution is better if the objective is smaller than the
1166 * current cutoff bound; solutions with infinite objective value are never accepted
1167 */
1168 if( (!set->misc_improvingsols || obj < primal->cutoffbound) && !SCIPsetIsInfinity(set, obj) )
1169 {
1170 /* find insert position for the solution */
1171 (*insertpos) = primalSearchSolPos(primal, set, transprob, origprob, sol);
1172 (*replace) = FALSE;
1173
1174 /* the solution should be added, if the insertpos is smaller than the maximum number of solutions to be stored
1175 * and it does not already exist or it does exist, but the existing solution should be replaced by the new one
1176 */
1177 if( (*insertpos) < set->limit_maxsol &&
1178 (!primalExistsSol(primal, set, stat, origprob, transprob, sol, insertpos, replace) || (*replace)) )
1179 return TRUE;
1180 }
1181
1182 return FALSE;
1183}
1184
1185/** check if we are willing to store the solution candidate for later checking */
1186static
1188 SCIP_PRIMAL* primal, /**< primal data */
1189 SCIP_SET* set, /**< global SCIP settings */
1190 SCIP_STAT* stat, /**< problem statistics data */
1191 SCIP_PROB* origprob, /**< original problem */
1192 SCIP_SOL* sol, /**< primal CIP solution */
1193 int* insertpos /**< pointer to store the insert position of that solution */
1194 )
1195{
1196 assert(SCIPsolIsOriginal(sol));
1197
1198 /* find insert position for the solution */
1199 (*insertpos) = primalSearchOrigSolPos(primal, sol);
1200
1201 if( !set->reopt_enable && (*insertpos) < set->limit_maxorigsol && !primalExistsOrigSol(primal, set, stat, origprob, sol, *insertpos) )
1202 return TRUE;
1203
1204 return FALSE;
1205}
1206
1207/** adds primal solution to solution storage by copying it */
1209 SCIP_PRIMAL* primal, /**< primal data */
1210 BMS_BLKMEM* blkmem, /**< block memory */
1211 SCIP_SET* set, /**< global SCIP settings */
1212 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1213 SCIP_STAT* stat, /**< problem statistics data */
1214 SCIP_PROB* origprob, /**< original problem */
1215 SCIP_PROB* transprob, /**< transformed problem after presolve */
1216 SCIP_TREE* tree, /**< branch and bound tree */
1217 SCIP_REOPT* reopt, /**< reoptimization data structure */
1218 SCIP_LP* lp, /**< current LP data */
1219 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1220 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1221 SCIP_SOL* sol, /**< primal CIP solution */
1222 SCIP_Bool* stored /**< stores whether given solution was good enough to keep */
1223 )
1224{
1225 SCIP_Bool replace;
1226 int insertpos;
1227
1228 assert(primal != NULL);
1229 assert(blkmem != NULL);
1230 assert(set != NULL);
1231 assert(messagehdlr != NULL);
1232 assert(stat != NULL);
1233 assert(origprob != NULL);
1234 assert(transprob != NULL);
1235 assert(tree != NULL);
1236 assert(lp != NULL);
1237 assert(eventqueue != NULL);
1238 assert(eventfilter != NULL);
1239 assert(sol != NULL);
1240 assert(stored != NULL);
1241
1242 insertpos = -1;
1243
1244 assert(!SCIPsolIsPartial(sol));
1245
1246 if( solOfInterest(primal, set, stat, origprob, transprob, sol, &insertpos, &replace) )
1247 {
1248 SCIP_SOL* solcopy;
1249#ifdef SCIP_MORE_DEBUG
1250 int i;
1251#endif
1252
1253 assert(insertpos >= 0 && insertpos < set->limit_maxsol);
1254
1255 /* create a copy of the solution */
1256 SCIP_CALL( SCIPsolCopy(&solcopy, blkmem, set, stat, primal, sol) );
1257
1258 /* insert copied solution into solution storage */
1259 SCIP_CALL( primalAddSol(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1260 tree, reopt, lp, eventqueue, eventfilter, &solcopy, insertpos, replace) );
1261#ifdef SCIP_MORE_DEBUG
1262 for( i = 0; i < primal->nsols - 1; ++i )
1263 {
1264 assert(SCIPsetIsLE(set, SCIPsolGetObj(primal->sols[i], set, transprob, origprob), SCIPsolGetObj(primal->sols[i+1], set, transprob, origprob)));
1265 }
1266#endif
1267 *stored = TRUE;
1268 }
1269 else
1270 *stored = FALSE;
1271
1272 return SCIP_OKAY;
1273}
1274
1275/** adds primal solution to solution storage, frees the solution afterwards */
1277 SCIP_PRIMAL* primal, /**< primal data */
1278 BMS_BLKMEM* blkmem, /**< block memory */
1279 SCIP_SET* set, /**< global SCIP settings */
1280 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1281 SCIP_STAT* stat, /**< problem statistics data */
1282 SCIP_PROB* origprob, /**< original problem */
1283 SCIP_PROB* transprob, /**< transformed problem after presolve */
1284 SCIP_TREE* tree, /**< branch and bound tree */
1285 SCIP_REOPT* reopt, /**< reoptimization data structure */
1286 SCIP_LP* lp, /**< current LP data */
1287 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1288 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1289 SCIP_SOL** sol, /**< pointer to primal CIP solution; is cleared in function call */
1290 SCIP_Bool* stored /**< stores whether given solution was good enough to keep */
1291 )
1292{
1293 SCIP_Bool replace;
1294 int insertpos;
1295
1296 assert(primal != NULL);
1297 assert(transprob != NULL);
1298 assert(origprob != NULL);
1299 assert(sol != NULL);
1300 assert(*sol != NULL);
1301 assert(stored != NULL);
1302
1303 insertpos = -1;
1304
1305 if( solOfInterest(primal, set, stat, origprob, transprob, *sol, &insertpos, &replace) )
1306 {
1307 assert(insertpos >= 0 && insertpos < set->limit_maxsol);
1308
1309 /* insert solution into solution storage */
1310 SCIP_CALL( primalAddSol(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1311 tree, reopt, lp, eventqueue, eventfilter, sol, insertpos, replace) );
1312
1313 /* clear the pointer, such that the user cannot access the solution anymore */
1314 *sol = NULL;
1315
1316 *stored = TRUE;
1317 }
1318 else
1319 {
1320 /* the solution is too bad -> free it immediately */
1321 SCIP_CALL( SCIPsolFree(sol, blkmem, primal) );
1322
1323 *stored = FALSE;
1324 }
1325 assert(*sol == NULL);
1326
1327 return SCIP_OKAY;
1328}
1329
1330/** adds primal solution to solution candidate storage of original problem space */
1332 SCIP_PRIMAL* primal, /**< primal data */
1333 BMS_BLKMEM* blkmem, /**< block memory */
1334 SCIP_SET* set, /**< global SCIP settings */
1335 SCIP_STAT* stat, /**< problem statistics data */
1336 SCIP_PROB* prob, /**< original problem data */
1337 SCIP_SOL* sol, /**< primal CIP solution; is cleared in function call */
1338 SCIP_Bool* stored /**< stores whether given solution was good enough to keep */
1339 )
1340{
1341 int insertpos;
1342
1343 assert(primal != NULL);
1344 assert(blkmem != NULL);
1345 assert(set != NULL);
1346 assert(stat != NULL);
1347 assert(sol != NULL);
1348 assert(SCIPsolIsOriginal(sol));
1349 assert(stored != NULL);
1350
1351 insertpos = -1;
1352
1353 if( SCIPsolIsPartial(sol) )
1354 {
1355 SCIP_SOL* solcopy;
1356
1357 /* create a copy of the solution */
1358 SCIP_CALL( SCIPsolCopy(&solcopy, blkmem, set, stat, primal, sol) );
1359
1360 SCIP_CALL( primalAddOrigPartialSol(primal, set, prob, solcopy) );
1361
1362 *stored = TRUE;
1363 }
1364 else if( origsolOfInterest(primal, set, stat, prob, sol, &insertpos) )
1365 {
1366 SCIP_SOL* solcopy;
1367
1368 assert(insertpos >= 0 && insertpos < set->limit_maxorigsol);
1369 assert(!set->reopt_enable);
1370
1371 /* create a copy of the solution */
1372 SCIP_CALL( SCIPsolCopy(&solcopy, blkmem, set, stat, primal, sol) );
1373
1374 /* insert solution into solution storage */
1375 SCIP_CALL( primalAddOrigSol(primal, blkmem, set, prob, solcopy, insertpos) );
1376
1377 *stored = TRUE;
1378 }
1379 else
1380 *stored = FALSE;
1381
1382 return SCIP_OKAY;
1383}
1384
1385/** adds primal solution to solution candidate storage of original problem space, frees the solution afterwards */
1387 SCIP_PRIMAL* primal, /**< primal data */
1388 BMS_BLKMEM* blkmem, /**< block memory */
1389 SCIP_SET* set, /**< global SCIP settings */
1390 SCIP_STAT* stat, /**< problem statistics data */
1391 SCIP_PROB* prob, /**< original problem data */
1392 SCIP_SOL** sol, /**< pointer to primal CIP solution; is cleared in function call */
1393 SCIP_Bool* stored /**< stores whether given solution was good enough to keep */
1394 )
1395{
1396 int insertpos;
1397
1398 assert(primal != NULL);
1399 assert(sol != NULL);
1400 assert(*sol != NULL);
1401 assert(SCIPsolIsOriginal(*sol));
1402 assert(stored != NULL);
1403
1404 insertpos = -1;
1405
1406 if( SCIPsolIsPartial(*sol) )
1407 {
1408 /* insert solution into solution storage */
1409 SCIP_CALL( primalAddOrigPartialSol(primal, set, prob, *sol) );
1410
1411 /* clear the pointer, such that the user cannot access the solution anymore */
1412 *sol = NULL;
1413
1414 *stored = TRUE;
1415 }
1416 else if( origsolOfInterest(primal, set, stat, prob, *sol, &insertpos) )
1417 {
1418 assert(insertpos >= 0 && insertpos < set->limit_maxorigsol);
1419 assert(!set->reopt_enable);
1420
1421 /* insert solution into solution storage */
1422 SCIP_CALL( primalAddOrigSol(primal, blkmem, set, prob, *sol, insertpos) );
1423
1424 /* clear the pointer, such that the user cannot access the solution anymore */
1425 *sol = NULL;
1426
1427 *stored = TRUE;
1428 }
1429 else
1430 {
1431 /* the solution is too bad -> free it immediately */
1432 SCIP_CALL( SCIPsolFree(sol, blkmem, primal) );
1433
1434 *stored = FALSE;
1435 }
1436 assert(*sol == NULL);
1437
1438 return SCIP_OKAY;
1439}
1440
1441/** links temporary solution of primal data to current solution */
1442static
1444 SCIP_PRIMAL* primal, /**< primal data */
1445 BMS_BLKMEM* blkmem, /**< block memory */
1446 SCIP_SET* set, /**< global SCIP settings */
1447 SCIP_STAT* stat, /**< problem statistics data */
1448 SCIP_PROB* prob, /**< transformed problem data */
1449 SCIP_TREE* tree, /**< branch and bound tree */
1450 SCIP_LP* lp, /**< current LP data */
1451 SCIP_HEUR* heur /**< heuristic that found the solution (or NULL if it's from the tree) */
1452 )
1453{
1454 assert(primal != NULL);
1455
1456 if( primal->currentsol == NULL )
1457 {
1458 SCIP_CALL( SCIPsolCreateCurrentSol(&primal->currentsol, blkmem, set, stat, prob, primal, tree, lp, heur) );
1459 }
1460 else
1461 {
1462 SCIP_CALL( SCIPsolLinkCurrentSol(primal->currentsol, set, stat, prob, tree, lp) );
1463 SCIPsolSetHeur(primal->currentsol, heur);
1464 }
1465
1466 return SCIP_OKAY;
1467}
1468
1469/** adds current LP/pseudo solution to solution storage */
1471 SCIP_PRIMAL* primal, /**< primal data */
1472 BMS_BLKMEM* blkmem, /**< block memory */
1473 SCIP_SET* set, /**< global SCIP settings */
1474 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1475 SCIP_STAT* stat, /**< problem statistics data */
1476 SCIP_PROB* origprob, /**< original problem */
1477 SCIP_PROB* transprob, /**< transformed problem after presolve */
1478 SCIP_TREE* tree, /**< branch and bound tree */
1479 SCIP_REOPT* reopt, /**< reoptimization data structure */
1480 SCIP_LP* lp, /**< current LP data */
1481 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1482 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1483 SCIP_HEUR* heur, /**< heuristic that found the solution (or NULL if it's from the tree) */
1484 SCIP_Bool* stored /**< stores whether given solution was good enough to keep */
1485 )
1486{
1487 assert(primal != NULL);
1488
1489 /* link temporary solution to current solution */
1490 SCIP_CALL( primalLinkCurrentSol(primal, blkmem, set, stat, transprob, tree, lp, heur) );
1491
1492 /* add solution to solution storage */
1493 SCIP_CALL( SCIPprimalAddSol(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1494 tree, reopt, lp, eventqueue, eventfilter, primal->currentsol, stored) );
1495
1496 return SCIP_OKAY;
1497}
1498
1499/** checks primal solution; if feasible, adds it to storage by copying it */
1501 SCIP_PRIMAL* primal, /**< primal data */
1502 BMS_BLKMEM* blkmem, /**< block memory */
1503 SCIP_SET* set, /**< global SCIP settings */
1504 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1505 SCIP_STAT* stat, /**< problem statistics data */
1506 SCIP_PROB* origprob, /**< original problem */
1507 SCIP_PROB* transprob, /**< transformed problem after presolve */
1508 SCIP_TREE* tree, /**< branch and bound tree */
1509 SCIP_REOPT* reopt, /**< reoptimization data structure */
1510 SCIP_LP* lp, /**< current LP data */
1511 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1512 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1513 SCIP_SOL* sol, /**< primal CIP solution */
1514 SCIP_Bool printreason, /**< Should all reasons of violations be printed? */
1515 SCIP_Bool completely, /**< Should all violations be checked? */
1516 SCIP_Bool checkbounds, /**< Should the bounds of the variables be checked? */
1517 SCIP_Bool checkintegrality, /**< Has integrality to be checked? */
1518 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
1519 SCIP_Bool* stored /**< stores whether given solution was feasible and good enough to keep */
1520 )
1521{
1522 SCIP_Bool feasible;
1523 SCIP_Bool replace;
1524 int insertpos;
1525
1526 assert(primal != NULL);
1527 assert(set != NULL);
1528 assert(transprob != NULL);
1529 assert(origprob != NULL);
1530 assert(tree != NULL);
1531 assert(sol != NULL);
1532 assert(stored != NULL);
1533
1534 /* if we want to solve exactly, the constraint handlers cannot rely on the LP's feasibility */
1535 checklprows = checklprows || set->misc_exactsolve;
1536
1537 insertpos = -1;
1538
1539 if( solOfInterest(primal, set, stat, origprob, transprob, sol, &insertpos, &replace) )
1540 {
1541 /* check solution for feasibility */
1542 SCIP_CALL( SCIPsolCheck(sol, set, messagehdlr, blkmem, stat, transprob, printreason, completely, checkbounds,
1543 checkintegrality, checklprows, &feasible) );
1544 }
1545 else
1546 feasible = FALSE;
1547
1548 if( feasible )
1549 {
1550 SCIP_SOL* solcopy;
1551
1552 assert(insertpos >= 0 && insertpos < set->limit_maxsol);
1553
1554 /* create a copy of the solution */
1555 SCIP_CALL( SCIPsolCopy(&solcopy, blkmem, set, stat, primal, sol) );
1556
1557 /* insert copied solution into solution storage */
1558 SCIP_CALL( primalAddSol(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1559 tree, reopt, lp, eventqueue, eventfilter, &solcopy, insertpos, replace) );
1560
1561 *stored = TRUE;
1562 }
1563 else
1564 *stored = FALSE;
1565
1566 return SCIP_OKAY;
1567}
1568
1569/** checks primal solution; if feasible, adds it to storage; solution is freed afterwards */
1571 SCIP_PRIMAL* primal, /**< primal data */
1572 BMS_BLKMEM* blkmem, /**< block memory */
1573 SCIP_SET* set, /**< global SCIP settings */
1574 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1575 SCIP_STAT* stat, /**< problem statistics data */
1576 SCIP_PROB* origprob, /**< original problem */
1577 SCIP_PROB* transprob, /**< transformed problem after presolve */
1578 SCIP_TREE* tree, /**< branch and bound tree */
1579 SCIP_REOPT* reopt, /**< reoptimization data structure */
1580 SCIP_LP* lp, /**< current LP data */
1581 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1582 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1583 SCIP_SOL** sol, /**< pointer to primal CIP solution; is cleared in function call */
1584 SCIP_Bool printreason, /**< Should all the reasons of violations be printed? */
1585 SCIP_Bool completely, /**< Should all violations be checked? */
1586 SCIP_Bool checkbounds, /**< Should the bounds of the variables be checked? */
1587 SCIP_Bool checkintegrality, /**< Has integrality to be checked? */
1588 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
1589 SCIP_Bool* stored /**< stores whether solution was feasible and good enough to keep */
1590 )
1591{
1592 SCIP_Bool feasible;
1593 SCIP_Bool replace;
1594 int insertpos;
1595
1596 assert(primal != NULL);
1597 assert(transprob != NULL);
1598 assert(origprob != NULL);
1599 assert(tree != NULL);
1600 assert(sol != NULL);
1601 assert(*sol != NULL);
1602 assert(stored != NULL);
1603
1604 *stored = FALSE;
1605
1606 /* if we want to solve exactly, the constraint handlers cannot rely on the LP's feasibility */
1607 checklprows = checklprows || set->misc_exactsolve;
1608
1609 insertpos = -1;
1610
1611 if( solOfInterest(primal, set, stat, origprob, transprob, *sol, &insertpos, &replace) )
1612 {
1613 /* check solution for feasibility */
1614 SCIP_CALL( SCIPsolCheck(*sol, set, messagehdlr, blkmem, stat, transprob, printreason, completely, checkbounds,
1615 checkintegrality, checklprows, &feasible) );
1616 }
1617 else
1618 feasible = FALSE;
1619
1620 if( feasible )
1621 {
1622 assert(insertpos >= 0 && insertpos < set->limit_maxsol);
1623
1624 /* insert solution into solution storage */
1625 SCIP_CALL( primalAddSol(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1626 tree, reopt, lp, eventqueue, eventfilter, sol, insertpos, replace) );
1627
1628 /* clear the pointer, such that the user cannot access the solution anymore */
1629 *sol = NULL;
1630 *stored = TRUE;
1631 }
1632 else
1633 {
1634 /* the solution is too bad or infeasible -> free it immediately */
1635 SCIP_CALL( SCIPsolFree(sol, blkmem, primal) );
1636 *stored = FALSE;
1637 }
1638 assert(*sol == NULL);
1639
1640 return SCIP_OKAY;
1641}
1642
1643/** checks current LP/pseudo solution; if feasible, adds it to storage */
1645 SCIP_PRIMAL* primal, /**< primal data */
1646 BMS_BLKMEM* blkmem, /**< block memory */
1647 SCIP_SET* set, /**< global SCIP settings */
1648 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1649 SCIP_STAT* stat, /**< problem statistics data */
1650 SCIP_PROB* origprob, /**< original problem */
1651 SCIP_PROB* transprob, /**< transformed problem after presolve */
1652 SCIP_TREE* tree, /**< branch and bound tree */
1653 SCIP_REOPT* reopt, /**< reoptimization data structure */
1654 SCIP_LP* lp, /**< current LP data */
1655 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1656 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1657 SCIP_HEUR* heur, /**< heuristic that found the solution (or NULL if it's from the tree) */
1658 SCIP_Bool printreason, /**< Should all reasons of violations be printed? */
1659 SCIP_Bool completely, /**< Should all violations be checked? */
1660 SCIP_Bool checkintegrality, /**< Has integrality to be checked? */
1661 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
1662 SCIP_Bool* stored /**< stores whether given solution was good enough to keep */
1663 )
1664{
1665 assert(primal != NULL);
1666
1667 /* link temporary solution to current solution */
1668 SCIP_CALL( primalLinkCurrentSol(primal, blkmem, set, stat, transprob, tree, lp, heur) );
1669
1670 /* add solution to solution storage */
1671 SCIP_CALL( SCIPprimalTrySol(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1672 tree, reopt, lp, eventqueue, eventfilter, primal->currentsol,
1673 printreason, completely, FALSE, checkintegrality, checklprows, stored) );
1674
1675 return SCIP_OKAY;
1676}
1677
1678/** inserts solution into the global array of all existing primal solutions */
1680 SCIP_PRIMAL* primal, /**< primal data */
1681 SCIP_SET* set, /**< global SCIP settings */
1682 SCIP_SOL* sol /**< primal CIP solution */
1683 )
1684{
1685 assert(primal != NULL);
1686 assert(sol != NULL);
1687 assert(SCIPsolGetPrimalIndex(sol) == -1);
1688
1689 /* allocate memory for solution storage */
1690 SCIP_CALL( ensureExistingsolsSize(primal, set, primal->nexistingsols+1) );
1691
1692 /* append solution */
1694 primal->existingsols[primal->nexistingsols] = sol;
1695 primal->nexistingsols++;
1696
1697 return SCIP_OKAY;
1698}
1699
1700/** removes solution from the global array of all existing primal solutions */
1702 SCIP_PRIMAL* primal, /**< primal data */
1703 SCIP_SOL* sol /**< primal CIP solution */
1704 )
1705{
1706 int idx;
1707
1708 assert(primal != NULL);
1709 assert(sol != NULL);
1710
1711#ifndef NDEBUG
1712 for( idx = 0; idx < primal->nexistingsols; ++idx )
1713 {
1714 assert(idx == SCIPsolGetPrimalIndex(primal->existingsols[idx]));
1715 }
1716#endif
1717
1718 /* remove solution */
1719 idx = SCIPsolGetPrimalIndex(sol);
1720 assert(0 <= idx && idx < primal->nexistingsols);
1721 assert(sol == primal->existingsols[idx]);
1722 if( idx < primal->nexistingsols-1 )
1723 {
1724 primal->existingsols[idx] = primal->existingsols[primal->nexistingsols-1];
1725 SCIPsolSetPrimalIndex(primal->existingsols[idx], idx);
1726 }
1727 primal->nexistingsols--;
1728}
1729
1730/** updates all existing primal solutions after a change in a variable's objective value */
1732 SCIP_PRIMAL* primal, /**< primal data */
1733 SCIP_VAR* var, /**< problem variable */
1734 SCIP_Real oldobj, /**< old objective value */
1735 SCIP_Real newobj /**< new objective value */
1736 )
1737{
1738 int i;
1739
1740 assert(primal != NULL);
1741
1742 for( i = 0; i < primal->nexistingsols; ++i )
1743 {
1744 if( !SCIPsolIsOriginal(primal->existingsols[i]) )
1745 SCIPsolUpdateVarObj(primal->existingsols[i], var, oldobj, newobj);
1746 }
1747}
1748
1749/** retransforms all existing solutions to original problem space
1750 *
1751 * @note as a side effect, the objective value of the solutions can change (numerical errors)
1752 * so we update the objective cutoff value and upper bound accordingly
1753 */
1755 SCIP_PRIMAL* primal, /**< primal data */
1756 BMS_BLKMEM* blkmem, /**< block memory */
1757 SCIP_SET* set, /**< global SCIP settings */
1758 SCIP_STAT* stat, /**< problem statistics data */
1759 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1760 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1761 SCIP_PROB* origprob, /**< original problem */
1762 SCIP_PROB* transprob, /**< transformed problem */
1763 SCIP_TREE* tree, /**< branch and bound tree */
1764 SCIP_REOPT* reopt, /**< reoptimization data structure */
1765 SCIP_LP* lp /**< current LP data */
1766 )
1767{
1768 SCIP_Bool hasinfval;
1769 int i;
1770
1771 assert(primal != NULL);
1772
1773 for( i = 0; i < primal->nsols; ++i )
1774 {
1775 if( SCIPsolGetOrigin(primal->sols[i]) == SCIP_SOLORIGIN_ZERO )
1776 {
1777 SCIP_CALL( SCIPsolRetransform(primal->sols[i], set, stat, origprob, transprob, &hasinfval) );
1778 }
1779 }
1780
1781 sortPrimalSols(primal, set, origprob, transprob);
1782
1783 /* check if the global upper bound has to be updated
1784 * @todo we do not inform anybody about this change; if this leads to some
1785 * problem, a possible solution is to issue a BESTSOLFOUND event
1786 */
1787 if( primal->nsols > 0 )
1788 {
1789 SCIP_Real obj;
1790
1791 obj = SCIPsolGetObj(primal->sols[0], set, transprob, origprob);
1792 if( obj < primal->cutoffbound )
1793 {
1794 /* update the upper bound */
1795 SCIP_CALL( SCIPprimalSetUpperbound(primal, blkmem, set, stat, eventfilter, eventqueue, transprob, tree, reopt, lp, obj) );
1796 }
1797 }
1798
1799 return SCIP_OKAY;
1800}
1801
1802/** tries to transform original solution to the transformed problem space */
1804 SCIP_PRIMAL* primal, /**< primal data */
1805 SCIP_SOL* sol, /**< primal solution */
1806 BMS_BLKMEM* blkmem, /**< block memory */
1807 SCIP_SET* set, /**< global SCIP settings */
1808 SCIP_MESSAGEHDLR* messagehdlr, /**< message handler */
1809 SCIP_STAT* stat, /**< problem statistics data */
1810 SCIP_PROB* origprob, /**< original problem */
1811 SCIP_PROB* transprob, /**< transformed problem after presolve */
1812 SCIP_TREE* tree, /**< branch and bound tree */
1813 SCIP_REOPT* reopt, /**< reoptimization data structure */
1814 SCIP_LP* lp, /**< current LP data */
1815 SCIP_EVENTQUEUE* eventqueue, /**< event queue */
1816 SCIP_EVENTFILTER* eventfilter, /**< event filter for global (not variable dependent) events */
1817 SCIP_Real* solvals, /**< array for internal use to store solution values, or NULL;
1818 * if the method is called multiple times in a row, an array with size >=
1819 * number of active variables should be given for performance reasons */
1820 SCIP_Bool* solvalset, /**< array for internal use to store which solution values were set, or NULL;
1821 * if the method is called multiple times in a row, an array with size >=
1822 * number of active variables should be given for performance reasons */
1823 int solvalssize, /**< size of solvals and solvalset arrays, should be >= number of active
1824 * variables */
1825 SCIP_Bool* added /**< pointer to store whether the solution was added */
1826 )
1827{
1828 SCIP_VAR** origvars;
1829 SCIP_VAR** transvars;
1830 SCIP_VAR* var;
1831 SCIP_Real* localsolvals;
1832 SCIP_Bool* localsolvalset;
1833 SCIP_Real solval;
1834 SCIP_Real scalar;
1835 SCIP_Real constant;
1836 SCIP_Bool localarrays;
1837 SCIP_Bool feasible;
1838 int norigvars;
1839 int ntransvars;
1840 int nvarsset;
1841 int v;
1842
1843 assert(origprob != NULL);
1844 assert(transprob != NULL);
1845 assert(SCIPsolIsOriginal(sol));
1846 assert(solvalssize == 0 || solvals != NULL);
1847 assert(solvalssize == 0 || solvalset != NULL);
1848
1849 origvars = origprob->vars;
1850 norigvars = origprob->nvars;
1851 transvars = transprob->vars;
1852 ntransvars = transprob->nvars;
1853 assert(solvalssize == 0 || solvalssize >= ntransvars);
1854
1855 SCIPsetDebugMsg(set, "try to transfer original solution %p with objective %g into the transformed problem space\n",
1856 (void*)sol, SCIPsolGetOrigObj(sol));
1857
1858 /* if no solvals and solvalset arrays are given, allocate local ones, otherwise use the given ones */
1859 localarrays = (solvalssize == 0);
1860 if( localarrays )
1861 {
1862 SCIP_CALL( SCIPsetAllocBufferArray(set, &localsolvals, ntransvars) );
1863 SCIP_CALL( SCIPsetAllocBufferArray(set, &localsolvalset, ntransvars) );
1864 }
1865 else
1866 {
1867 localsolvals = solvals;
1868 localsolvalset = solvalset;
1869 }
1870
1871 BMSclearMemoryArray(localsolvalset, ntransvars);
1872 feasible = TRUE;
1873 (*added) = FALSE;
1874 nvarsset = 0;
1875
1876 /* for each original variable, get the corresponding active, fixed or multi-aggregated variable;
1877 * if it resolves to an active variable, we set its solution value or check whether an already stored solution value
1878 * is consistent; if it resolves to a fixed variable, we check that the fixing matches the original solution value;
1879 * multi-aggregated variables are skipped, because their value is defined by setting solution values for the active
1880 * variables, anyway
1881 */
1882 for( v = 0; v < norigvars && feasible; ++v )
1883 {
1884 var = origvars[v];
1885
1886 solval = SCIPsolGetVal(sol, set, stat, var);
1887
1888 /* get corresponding active, fixed, or multi-aggregated variable */
1889 scalar = 1.0;
1890 constant = 0.0;
1891 SCIP_CALL( SCIPvarGetProbvarSum(&var, set, &scalar, &constant) );
1894
1895 /* check whether the fixing corresponds to the solution value of the original variable */
1896 if( scalar == 0.0 )
1897 {
1898 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_FIXED ||
1899 (SCIPsetIsInfinity(set, constant) || SCIPsetIsInfinity(set, -constant)));
1900
1901 if( !SCIPsetIsEQ(set, solval, constant) )
1902 {
1903 SCIPsetDebugMsg(set, "original variable <%s> (solval=%g) resolves to fixed variable <%s> (original solval=%g)\n",
1904 SCIPvarGetName(origvars[v]), solval, SCIPvarGetName(var), constant);
1905 feasible = FALSE;
1906 }
1907 }
1908 else if( SCIPvarIsActive(var) )
1909 {
1910 /* if we already assigned a solution value to the transformed variable, check that it corresponds to the
1911 * value obtained from the currently regarded original variable
1912 */
1913 if( localsolvalset[SCIPvarGetProbindex(var)] )
1914 {
1915 if( !SCIPsetIsEQ(set, solval, scalar * localsolvals[SCIPvarGetProbindex(var)] + constant) )
1916 {
1917 SCIPsetDebugMsg(set, "original variable <%s> (solval=%g) resolves to active variable <%s> with assigned solval %g (original solval=%g)\n",
1918 SCIPvarGetName(origvars[v]), solval, SCIPvarGetName(var), localsolvals[SCIPvarGetProbindex(var)],
1919 scalar * localsolvals[SCIPvarGetProbindex(var)] + constant);
1920 feasible = FALSE;
1921 }
1922 }
1923 /* assign solution value to the transformed variable */
1924 else
1925 {
1926 assert(scalar != 0.0);
1927
1928 localsolvals[SCIPvarGetProbindex(var)] = (solval - constant) / scalar;
1929 localsolvalset[SCIPvarGetProbindex(var)] = TRUE;
1930 ++nvarsset;
1931 }
1932 }
1933#ifndef NDEBUG
1934 /* we do not have to handle multi-aggregated variables here, since by assigning values to all active variabes,
1935 * we implicitly assign values to the multi-aggregated variables, too
1936 */
1937 else
1939#endif
1940 }
1941
1942 /* if the solution values of fixed and active variables lead to no contradiction, construct solution and try it */
1943 if( feasible )
1944 {
1945 SCIP_SOL* transsol;
1946
1947 SCIP_CALL( SCIPsolCreate(&transsol, blkmem, set, stat, primal, tree, SCIPsolGetHeur(sol)) );
1948
1949 /* set solution values for variables to which we assigned a value */
1950 for( v = 0; v < ntransvars; ++v )
1951 {
1952 if( localsolvalset[v] )
1953 {
1954 SCIP_CALL( SCIPsolSetVal(transsol, set, stat, tree, transvars[v], localsolvals[v]) );
1955 }
1956 }
1957
1958 SCIP_CALL( SCIPprimalTrySolFree(primal, blkmem, set, messagehdlr, stat, origprob, transprob,
1959 tree, reopt, lp, eventqueue, eventfilter, &transsol, FALSE, FALSE, TRUE, TRUE, TRUE, added) );
1960
1961 SCIPsetDebugMsg(set, "solution transferred, %d/%d active variables set (stored=%u)\n", nvarsset, ntransvars, *added);
1962 }
1963 else
1964 (*added) = FALSE;
1965
1966 /* free local arrays, if needed */
1967 if( localarrays )
1968 {
1969 SCIPsetFreeBufferArray(set, &localsolvalset);
1970 SCIPsetFreeBufferArray(set, &localsolvals);
1971 }
1972
1973 return SCIP_OKAY;
1974}
1975
1976
1977/** is the updating of violations enabled for this problem? */
1979 SCIP_PRIMAL* primal /**< problem data */
1980 )
1981{
1982 assert(primal != NULL);
1983
1984 return primal->updateviolations;
1985}
1986
1987/** set whether the updating of violations is turned on */
1989 SCIP_PRIMAL* primal, /**< problem data */
1990 SCIP_Bool updateviolations /**< marks whether the updating of violations is turned on */
1991 )
1992{
1993 assert(primal != NULL);
1994
1995 primal->updateviolations = updateviolations;
1996}
common defines and data types used in all packages of SCIP
#define NULL
Definition: def.h:267
#define SCIP_INVALID
Definition: def.h:193
#define SCIP_Bool
Definition: def.h:91
#define MIN(x, y)
Definition: def.h:243
#define SCIP_ALLOC(x)
Definition: def.h:385
#define SCIP_Real
Definition: def.h:173
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define SCIP_LONGINT_FORMAT
Definition: def.h:165
#define SCIPABORT()
Definition: def.h:346
#define REALABS(x)
Definition: def.h:197
#define SCIP_CALL(x)
Definition: def.h:374
SCIP_RETCODE SCIPdispPrintLine(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, FILE *file, SCIP_Bool forcedisplay, SCIP_Bool endline)
Definition: disp.c:415
internal methods for displaying runtime statistics
SCIP_RETCODE SCIPeventChgSol(SCIP_EVENT *event, SCIP_SOL *sol)
Definition: event.c:1354
SCIP_RETCODE SCIPeventProcess(SCIP_EVENT *event, SCIP_SET *set, SCIP_PRIMAL *primal, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter)
Definition: event.c:1574
SCIP_RETCODE SCIPeventChgType(SCIP_EVENT *event, SCIP_EVENTTYPE eventtype)
Definition: event.c:1040
internal methods for managing events
SCIP_SOLORIGIN SCIPsolGetOrigin(SCIP_SOL *sol)
Definition: sol.c:2711
SCIP_Real SCIPsolGetOrigObj(SCIP_SOL *sol)
Definition: sol.c:2741
SCIP_Real SCIPsolGetTime(SCIP_SOL *sol)
Definition: sol.c:2764
SCIP_Longint SCIPsolGetNodenum(SCIP_SOL *sol)
Definition: sol.c:2784
SCIP_HEUR * SCIPsolGetHeur(SCIP_SOL *sol)
Definition: sol.c:2804
SCIP_Bool SCIPsolIsOriginal(SCIP_SOL *sol)
Definition: sol.c:2721
int SCIPsolGetDepth(SCIP_SOL *sol)
Definition: sol.c:2794
SCIP_Bool SCIPsolIsPartial(SCIP_SOL *sol)
Definition: sol.c:2731
int SCIPsolGetRunnum(SCIP_SOL *sol)
Definition: sol.c:2774
void SCIPsolSetHeur(SCIP_SOL *sol, SCIP_HEUR *heur)
Definition: sol.c:2849
SCIP_Real SCIPgetLowerbound(SCIP *scip)
SCIP_Bool SCIPvarIsActive(SCIP_VAR *var)
Definition: var.c:17748
SCIP_VARSTATUS SCIPvarGetStatus(SCIP_VAR *var)
Definition: var.c:17538
int SCIPvarGetProbindex(SCIP_VAR *var)
Definition: var.c:17768
const char * SCIPvarGetName(SCIP_VAR *var)
Definition: var.c:17419
SCIP_RETCODE SCIPlpSetCutoffbound(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real cutoffbound)
Definition: lp.c:10201
internal methods for LP management
#define BMSfreeMemory(ptr)
Definition: memory.h:145
#define BMSreallocMemoryArray(ptr, num)
Definition: memory.h:127
#define BMSclearMemoryArray(ptr, num)
Definition: memory.h:130
struct BMS_BlkMem BMS_BLKMEM
Definition: memory.h:437
#define BMSfreeMemoryArrayNull(ptr)
Definition: memory.h:148
#define BMSallocMemory(ptr)
Definition: memory.h:118
void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:427
SCIP_RETCODE SCIPprimalAddCurrentSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_HEUR *heur, SCIP_Bool *stored)
Definition: primal.c:1470
void SCIPprimalSetUpdateViolations(SCIP_PRIMAL *primal, SCIP_Bool updateviolations)
Definition: primal.c:1988
SCIP_RETCODE SCIPprimalUpdateRay(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *primalray, BMS_BLKMEM *blkmem)
Definition: primal.c:601
void SCIPprimalSolFreed(SCIP_PRIMAL *primal, SCIP_SOL *sol)
Definition: primal.c:1701
static SCIP_RETCODE primalAddSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_SOL **solptr, int insertpos, SCIP_Bool replace)
Definition: primal.c:630
static SCIP_Bool origsolOfInterest(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_SOL *sol, int *insertpos)
Definition: primal.c:1187
SCIP_RETCODE SCIPprimalSetUpperbound(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_PROB *prob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_Real upperbound)
Definition: primal.c:416
static int primalSearchSolPos(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_SOL *sol)
Definition: primal.c:930
SCIP_RETCODE SCIPprimalAddOrigSolFree(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_SOL **sol, SCIP_Bool *stored)
Definition: primal.c:1386
SCIP_RETCODE SCIPprimalTryCurrentSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_HEUR *heur, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: primal.c:1644
static SCIP_RETCODE ensureExistingsolsSize(SCIP_PRIMAL *primal, SCIP_SET *set, int num)
Definition: primal.c:108
SCIP_RETCODE SCIPprimalClear(SCIP_PRIMAL **primal, BMS_BLKMEM *blkmem)
Definition: primal.c:203
void SCIPprimalAddOrigObjoffset(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_Real addval)
Definition: primal.c:544
SCIP_RETCODE SCIPprimalFree(SCIP_PRIMAL **primal, BMS_BLKMEM *blkmem)
Definition: primal.c:160
static SCIP_Bool primalExistsOrigSol(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_SOL *sol, int insertpos)
Definition: primal.c:1097
static SCIP_RETCODE primalAddOrigSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_SOL *sol, int insertpos)
Definition: primal.c:847
SCIP_SOL * SCIPprimalGetRay(SCIP_PRIMAL *primal)
Definition: primal.c:591
SCIP_RETCODE SCIPprimalTrySolFree(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_SOL **sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: primal.c:1570
SCIP_Bool SCIPprimalUpdateViolations(SCIP_PRIMAL *primal)
Definition: primal.c:1978
SCIP_Bool SCIPprimalUpperboundIsSol(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_PROB *transprob, SCIP_PROB *origprob)
Definition: primal.c:578
static SCIP_RETCODE ensureSolsSize(SCIP_PRIMAL *primal, SCIP_SET *set, int num)
Definition: primal.c:60
static void sortPrimalSols(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_PROB *origprob, SCIP_PROB *transprob)
Definition: primal.c:247
SCIP_RETCODE SCIPprimalAddOrigSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_SOL *sol, SCIP_Bool *stored)
Definition: primal.c:1331
static SCIP_RETCODE primalSetCutoffbound(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_Real cutoffbound)
Definition: primal.c:274
void SCIPprimalUpdateVarObj(SCIP_PRIMAL *primal, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real newobj)
Definition: primal.c:1731
SCIP_RETCODE SCIPprimalCreate(SCIP_PRIMAL **primal)
Definition: primal.c:130
SCIP_RETCODE SCIPprimalUpdateObjoffset(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp)
Definition: primal.c:488
static SCIP_RETCODE primalLinkCurrentSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_TREE *tree, SCIP_LP *lp, SCIP_HEUR *heur)
Definition: primal.c:1443
SCIP_RETCODE SCIPprimalTrySol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_SOL *sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: primal.c:1500
SCIP_RETCODE SCIPprimalTransformSol(SCIP_PRIMAL *primal, SCIP_SOL *sol, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Real *solvals, SCIP_Bool *solvalset, int solvalssize, SCIP_Bool *added)
Definition: primal.c:1803
SCIP_RETCODE SCIPprimalUpdateObjlimit(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp)
Definition: primal.c:448
SCIP_RETCODE SCIPprimalAddSolFree(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_SOL **sol, SCIP_Bool *stored)
Definition: primal.c:1276
static SCIP_RETCODE primalSetUpperbound(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_PROB *prob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_Real upperbound)
Definition: primal.c:361
SCIP_RETCODE SCIPprimalAddSol(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_SOL *sol, SCIP_Bool *stored)
Definition: primal.c:1208
static int primalSearchOrigSolPos(SCIP_PRIMAL *primal, SCIP_SOL *sol)
Definition: primal.c:980
SCIP_RETCODE SCIPprimalSetCutoffbound(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_Real cutoffbound, SCIP_Bool useforobjlimit)
Definition: primal.c:307
static SCIP_Bool solOfInterest(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_SOL *sol, int *insertpos, SCIP_Bool *replace)
Definition: primal.c:1149
SCIP_RETCODE SCIPprimalSolCreated(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_SOL *sol)
Definition: primal.c:1679
SCIP_RETCODE SCIPprimalRetransformSolutions(SCIP_PRIMAL *primal, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp)
Definition: primal.c:1754
static SCIP_Bool primalExistsSol(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_SOL *sol, int *insertpos, SCIP_Bool *replace)
Definition: primal.c:1015
static SCIP_RETCODE ensurePartialsolsSize(SCIP_PRIMAL *primal, SCIP_SET *set, int num)
Definition: primal.c:83
static SCIP_RETCODE primalAddOrigPartialSol(SCIP_PRIMAL *primal, SCIP_SET *set, SCIP_PROB *prob, SCIP_SOL *sol)
Definition: primal.c:899
internal methods for collecting primal CIP solutions and primal informations
SCIP_Real SCIPprobGetObjlim(SCIP_PROB *prob, SCIP_SET *set)
Definition: prob.c:2362
void SCIPprobSetObjlim(SCIP_PROB *prob, SCIP_Real objlim)
Definition: prob.c:1505
SCIP_Bool SCIPprobIsObjIntegral(SCIP_PROB *prob)
Definition: prob.c:2338
SCIP_Real SCIPprobExternObjval(SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_SET *set, SCIP_Real objval)
Definition: prob.c:2157
SCIP_Real SCIPprobInternObjval(SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_SET *set, SCIP_Real objval)
Definition: prob.c:2179
internal methods for storing and manipulating the main problem
public methods for message output
#define SCIPerrorMessage
Definition: pub_message.h:64
#define SCIPdebug(x)
Definition: pub_message.h:93
public methods for problem variables
data structures and methods for collecting reoptimization information
public methods for querying solving statistics
SCIP_Bool SCIPsetIsGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6293
SCIP_Real SCIPsetFeasCeil(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6775
SCIP_Bool SCIPsetIsFeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6663
SCIP_Bool SCIPsetIsFeasLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6641
SCIP_Bool SCIPsetIsLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6257
SCIP_Real SCIPsetEpsilon(SCIP_SET *set)
Definition: set.c:6086
SCIP_Bool SCIPsetIsEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6221
SCIP_STAGE SCIPsetGetStage(SCIP_SET *set)
Definition: set.c:2952
SCIP_Real SCIPsetInfinity(SCIP_SET *set)
Definition: set.c:6064
SCIP_Bool SCIPsetIsLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6239
SCIP_Bool SCIPsetIsInfinity(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6199
SCIP_Bool SCIPsetIsGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6275
SCIP_Real SCIPsetCutoffbounddelta(SCIP_SET *set)
Definition: set.c:6164
SCIP_Bool SCIPsetIsFeasGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6685
int SCIPsetCalcMemGrowSize(SCIP_SET *set, int num)
Definition: set.c:5764
internal methods for global SCIP settings
#define SCIPsetFreeBufferArray(set, ptr)
Definition: set.h:1755
#define SCIPsetAllocBufferArray(set, ptr, num)
Definition: set.h:1748
#define SCIPsetDebugMsg
Definition: set.h:1784
void SCIPsolUpdateVarObj(SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real newobj)
Definition: sol.c:1588
void SCIPsolSetPrimalIndex(SCIP_SOL *sol, int primalindex)
Definition: sol.c:2824
int SCIPsolGetPrimalIndex(SCIP_SOL *sol)
Definition: sol.c:2814
SCIP_RETCODE SCIPsolLinkCurrentSol(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_TREE *tree, SCIP_LP *lp)
Definition: sol.c:988
SCIP_RETCODE SCIPsolCheck(SCIP_SOL *sol, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, BMS_BLKMEM *blkmem, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *feasible)
Definition: sol.c:1838
SCIP_RETCODE SCIPsolFree(SCIP_SOL **sol, BMS_BLKMEM *blkmem, SCIP_PRIMAL *primal)
Definition: sol.c:801
SCIP_RETCODE SCIPsolRetransform(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob, SCIP_Bool *hasinfval)
Definition: sol.c:2059
SCIP_RETCODE SCIPsolCreateCurrentSol(SCIP_SOL **sol, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_LP *lp, SCIP_HEUR *heur)
Definition: sol.c:703
SCIP_RETCODE SCIPsolTransform(SCIP_SOL *sol, SCIP_SOL **transsol, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PRIMAL *primal)
Definition: sol.c:426
SCIP_RETCODE SCIPsolSetVal(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_TREE *tree, SCIP_VAR *var, SCIP_Real val)
Definition: sol.c:1077
SCIP_Real SCIPsolGetVal(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var)
Definition: sol.c:1372
SCIP_RETCODE SCIPsolUnlink(SCIP_SOL *sol, SCIP_SET *set, SCIP_PROB *prob)
Definition: sol.c:1048
SCIP_Bool SCIPsolsAreEqual(SCIP_SOL *sol1, SCIP_SOL *sol2, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *origprob, SCIP_PROB *transprob)
Definition: sol.c:2221
SCIP_Real SCIPsolGetObj(SCIP_SOL *sol, SCIP_SET *set, SCIP_PROB *transprob, SCIP_PROB *origprob)
Definition: sol.c:1571
SCIP_RETCODE SCIPsolPrint(SCIP_SOL *sol, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_PROB *transprob, FILE *file, SCIP_Bool mipstart, SCIP_Bool printzeros)
Definition: sol.c:2286
void SCIPsolUpdateVarsum(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_Real weight)
Definition: sol.c:2031
SCIP_RETCODE SCIPsolCopy(SCIP_SOL **sol, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PRIMAL *primal, SCIP_SOL *sourcesol)
Definition: sol.c:362
SCIP_RETCODE SCIPsolCreate(SCIP_SOL **sol, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_HEUR *heur)
Definition: sol.c:288
void SCIPsolOrigAddObjval(SCIP_SOL *sol, SCIP_Real addval)
Definition: sol.c:2752
internal methods for storing primal CIP solutions
internal methods for problem statistics
SCIP_SOL * currentsol
Definition: struct_primal.h:60
int partialsolssize
Definition: struct_primal.h:64
int existingsolssize
Definition: struct_primal.h:67
SCIP_SOL ** partialsols
Definition: struct_primal.h:58
SCIP_SOL ** sols
Definition: struct_primal.h:57
SCIP_Longint nbestsolsfound
Definition: struct_primal.h:51
SCIP_Bool updateviolations
Definition: struct_primal.h:70
SCIP_SOL * primalray
Definition: struct_primal.h:61
SCIP_Longint nsolsfound
Definition: struct_primal.h:48
SCIP_Longint nlimsolsfound
Definition: struct_primal.h:49
SCIP_Real cutoffbound
Definition: struct_primal.h:55
SCIP_SOL ** existingsols
Definition: struct_primal.h:59
SCIP_Real upperbound
Definition: struct_primal.h:54
SCIP_OBJSENSE objsense
Definition: struct_prob.h:87
SCIP_VAR ** vars
Definition: struct_prob.h:64
SCIP_Longint nnodes
Definition: struct_stat.h:82
int firstprimaldepth
Definition: struct_stat.h:272
SCIP_VISUAL * visual
Definition: struct_stat.h:184
SCIP_Real firstprimaltime
Definition: struct_stat.h:134
int nrunsbeforefirst
Definition: struct_stat.h:271
SCIP_HEUR * firstprimalheur
Definition: struct_stat.h:185
SCIP_Longint nnodesbeforefirst
Definition: struct_stat.h:122
SCIP_Longint bestsolnode
Definition: struct_stat.h:113
SCIP_Real firstprimalbound
Definition: struct_stat.h:133
datastructures for managing events
Definition: heur_padm.c:135
SCIP_NODE * SCIPtreeGetCurrentNode(SCIP_TREE *tree)
Definition: tree.c:8435
int SCIPtreeGetCurrentDepth(SCIP_TREE *tree)
Definition: tree.c:8452
SCIP_RETCODE SCIPtreeCutoff(SCIP_TREE *tree, SCIP_REOPT *reopt, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real cutoffbound)
Definition: tree.c:5183
SCIP_Bool SCIPtreeInRepropagation(SCIP_TREE *tree)
Definition: tree.c:8425
internal methods for branch and bound tree
#define SCIP_EVENTTYPE_POORSOLFOUND
Definition: type_event.h:104
#define SCIP_EVENTTYPE_BESTSOLFOUND
Definition: type_event.h:105
@ SCIP_OBJSENSE_MINIMIZE
Definition: type_prob.h:48
@ SCIP_INVALIDDATA
Definition: type_retcode.h:52
@ SCIP_OKAY
Definition: type_retcode.h:42
@ SCIP_INVALIDCALL
Definition: type_retcode.h:51
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
@ SCIP_STAGE_PROBLEM
Definition: type_set.h:45
@ SCIP_STAGE_SOLVING
Definition: type_set.h:53
@ SCIP_STAGE_PRESOLVED
Definition: type_set.h:51
@ SCIP_SOLORIGIN_ZERO
Definition: type_sol.h:43
@ SCIP_SOLORIGIN_ORIGINAL
Definition: type_sol.h:42
@ SCIP_VARSTATUS_FIXED
Definition: type_var.h:52
@ SCIP_VARSTATUS_MULTAGGR
Definition: type_var.h:54
SCIP_RETCODE SCIPvarGetProbvarSum(SCIP_VAR **var, SCIP_SET *set, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12647
internal methods for problem variables
void SCIPvisualUpperbound(SCIP_VISUAL *visual, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real upperbound)
Definition: visual.c:805
void SCIPvisualFoundSolution(SCIP_VISUAL *visual, SCIP_SET *set, SCIP_STAT *stat, SCIP_NODE *node, SCIP_Bool bettersol, SCIP_SOL *sol)
Definition: visual.c:669
methods for creating output for visualization tools (VBC, BAK)